
 1

Cost, Benefits and Quality of Software Development
Documentation: A Systematic Mapping

Junji Zhi1, Vahid Garousi-Yusifoğlu2,3, Bo Sun4,5, Golara Garousi3,6, Shawn Shahnewaz3, Guenther Ruhe3,4

1Department of Computer Science
University of Toronto, Ontario, Canada

zhij@cs.toronto.edu

2Department of Software Engineering
Atilim University, İncek, Ankara, Turkey

vahid.garousi@atilim.edu.tr

3Department of Electrical and Computer Engineering
University of Calgary, Alberta, Canada

4Department of Computer Science
University of Calgary, Alberta, Canada

{smshahne, sbo, ruhe} @ucalgary.ca

5iSolutions Inc. Calgary, Alberta, Canada

6geoLOGIC Systems Ltd., Calgary, Alberta, Canada
golara.garousi@gmail.com

Abstract:

Context: Software documentation is an integral part of any software development process. Researchers and
practitioners have expressed concerns about costs, benefits and quality of software documentation in practice. On
the one hand, there is a lack of a comprehensive model to evaluate the quality of documentation. On the other hand,
researchers and practitioners need to assess whether documentation cost outweighs its benefit.

Objectives: In this study, we aim to summarize the existing literature and provide an overview of the field of software
documentation cost, benefit and quality.

Method: We use the systematic-mapping methodology to map the existing body of knowledge related to software
documentation cost, benefit and quality. To achieve our objectives, 11 Research Questions (RQ) are raised. The
primary papers are carefully selected. After applying the inclusion and exclusion criteria, our study pool included a set
of 69 papers from 1971-2011. A systematic map is developed and refined iteratively.

Results: We present the results of a systematic mapping covering different research aspects related to software
documentation cost, benefit and quality (RQ 1-11). Key findings include: (1) Validation research papers are
dominating (27 papers), followed by solution proposals (21 papers). (2) Most papers (61 out of 69) do not mention the
development life-cycle model explicitly. Agile development is only mentioned in 6 papers. (3) Most papers include
only one “System under Study” (SUS) which is mostly academic prototype. The average number of participants in
survey-based papers is 106, the highest one having approximately 1,000 participants. (4) In terms of focus of papers,
50 papers focused on documentation quality, followed by 37 papers on benefit, and 12 papers on documentation
cost. (5) The quality attributes of documentation that appear in most papers are, in order: completeness, consistency
and accessibility. Additionally, improved meta-models for documentation cost, benefit and quality are also presented.
Furthermore, we have created an online paper repository of the primary papers analyzed and mapped during this
study.

Conclusion: Our study results show that this research area is emerging but far from mature. Firstly, documentation
cost aspect seems to have been neglected in the existing literature and there are no systematic methods or models

 2

to measure cost. Also, despite a substantial number of solutions proposed during the last 40 years, more and
stronger empirical evidences are still needed to enhance our understanding of this area. In particular, what we expect
includes (1) More validation or evaluation studies; (2) Studies involving large-scale development projects, or from
large number of study participants of various organizations; (3) More industry-academia collaborations; (4) More
estimation models or methods to assess documentation quality, benefit and, especially, cost.

Keywords: Software documentation, Technical software documentation, Documentation cost, Documentation
benefit, Documentation quality, Systematic mapping, Paper repository.

1 INTRODUCTION

Software documentation is an integral part of any software development process [14]. In fact, software
documentation has become a popular sub-domain in software engineering [18] to the extent that there are
special interest groups such as the ACM Special Interest Group on Design of Communication (SIGDOC).

A literature search in the beginning of this study (Fall 2013) yielded 500+ papers on software
documentation. A large portion of this set proposes various types of documentation management
systems or formats. Another portion of the paper set focuses on cost, benefits and quality of
documentation, the subjects which we focus on in this study.

In our study, we target the documents that are software development related. We call them technical and
refer to those documents that (1) are produced during the software development lifecycle and (2) whose
target audience(s) are software developer(s). The types of documents within the scope of our
investigation typically include requirement, design, implementation and test documents as well as code
comments. Product or user manuals may also be produced during development lifecycle, but are
excluded in our investigation because it violates the second criterion, i.e., their target audiences are not
software developers. We define the term cost as the value of effort or time that has been used to produce a
software artıfact (e.g., code, or documentation).

A considerable share of software projects’ costs are spent on documentation, e.g., a ratio of 11% was
reported in [48]. This indicates that the effort consumed in documentation is one significant cost drivers
during software development processes. It is natural and expected that, when cost is spent in developing
an artifact, that artifact should be used and provides benefit at some point in the development or
maintenance phase [36, 51, 62]. The benefits could be reflected in many aspects, e.g., shortened task
duration, improved code quality, higher productivity, or any other improvements related to software
development. In terms of documentation quality, we define it as the character of documents with respect
to fineness which is often influenced by how much time/effort is spent on and affects the benefits
practitioners get from the documents. Therefore, the aspect of document quality is also included in our
scope of study.

On the other hand, the traditional view of software documentation is undergoing the challenge of Agile
development methods [10, 45, 46, 56]. As the Agile manifesto [143] points out: “Working software [is
valued] over comprehensive documentation”. The manifesto also mentions that, while there is value in
the items on the right (i.e. documentation), we value the items on the left (i.e. working software) more.
Does this mean documentation is no longer important [56]? Practitioners start to question whether the
cost of creating and maintaining documentation outweighs its potential benefit [46, 56]. To answer such a
question, one needs to be able to quantitatively measure the cost and benefit of documentation.

During the past three to four decades, researchers, in increasing numbers, have proposed different
techniques for analyzing cost, benefit and quality of documentation. As the research area matures and the
number of related papers increases, we feel it is important to summarize the current state-of-the-art and
provide an overview of the trends in this specialized field. To address that goal, we present in this paper
a systematic mapping of the literature in this area.

According to Petersen et al. [152], a systematic mapping (SM) is a method to review, classify, and
structure papers related to a specific research field in software engineering. According to Kitchenham et
al. [156]: “mapping papers can save time and effort for researchers and provide baselines to assist new

 3

research efforts”. The goal is to obtain an overview of existing approaches, outlining the coverage of the
research field in different facets of the classification scheme that we develop in this paper. Identified gaps
in the field serve as a valuable basis for future research directions. Using an empirical study, Kitchenham
et al. [157] reported that SM papers also have educational values and would provide young researchers
and students with useful and transferable research skills and are a useful first step for postgraduate PhD
candidates.

Unlike a Systematic Literature Review (SLR) [150], finding evidence for impact of a proposed approach is
not the main focus in a systematic mapping [152]. However, the two methods have many overlaps and
the results of a systematic mapping can be fed into a more rigorous systematic review study to support
evidence-based software engineering [150].

Systematic mapping papers generally consist of five steps including: (1) a definition of research questions,
(2) conducting the search for relevant papers, (3) screening of papers, (4) key-wording of abstracts, and
(5) data extraction and mapping [152], which we follow in this paper.

As far as we are concerned, we have not been able to find any study to synthesize or to systematically
map the existing papers on software documentation cost, benefit and quality. Our study aims to survey
the existing literature for purpose of identifying research trends. We hope that this paper contributes a
summary of the area that could be useful for follow-up future papers. Also, the need for this SM was
motivated in the context of a multi-year industrial collaborative research and development project in
which the authors are involved in, which aims to minimize the cost and amount of documentation across
the software development life-cycle for one of our industrial partners.

The main questions we intend to answer in this study are:

(1) How do researchers assess the quality of documentation?
(2) What are the cost-related attributes of software documentation?
(3) What benefit does documentation bring to software practitioners?

During our SM study, we have extracted the attributes or metrics to measure these three aspects. For
document quality aspect, we extracted more than 13 attributes that cover different aspects of document
quality, including up-to-date-ness, completeness, etc. For benefit aspect, we also gathered three main
categories (e.g., development aid, maintenance aid, etc.) and two metrics (e.g., task time reduction, etc.).
In terms of document cost, we also extracted two main categories (i.e., production or maintenance cost,
etc.) and one quantitative metric (i.e., document size). The results are presented in detail in Section 6.8-
6.10.

The main contributions of this paper are two-fold:

 A unified meta-model for documentation quality incorporating and consolidating all the individual
and partial parts proposed by previous researchers, and also a meta-model for documentation usage
process and benefit (Section 5.2)

 A systematic map (Section 5) developed for the area of documentation cost, benefit, and quality and
consequently the systematic mapping of the existing research in this area (Sections 6)

Also, we published an online paper repository which has been created during this systematic study [155].
Future researchers or practitioners can find related works in the area of software documentation cost,
benefit and quality by using our repository.

The remainder of paper is organized as followed. Section 2 discusses background and related work. In

Section 3, we describe our research method, including the overall SM process, the goal and research

questions tackled in this study. Section 4 discusses in detail the paper selection process. Section 5 presents

the systematic map which has been built through an iterative selection and synthesis process. Section 6

presents the results of the systematic mapping. Validity aspects of this study are discussed in Section 7.

Finally, Section 8 summarizes and concludes this study and states the future work directions. The

 4

reference section at the end of the paper is divided into two parts: primary papers of the systematic

mapping are listed first and then the other references used in this study.

2 BACKGROUND AND RELATED WORK

Before presenting our SM study and results, we discuss in this section the following background
information and related work:

 What is software documentation?
 Systematic mappings and literature-review studies in software engineering
 Existing work in formalizing software documentation

2.1 WHAT IS SOFTWARE DOCUMENTATION?

In the thesis of Andrew Forward [3], software documentation is defined as "an artefact whose purpose is
to communicate information about the software system to which it belongs". In this definition,
documentation is stressed for the usage of communication among software engineers. Parnas [38] defines
document as ”a written description that has an official status or authority and may be used as evidence“.
Such description is expected to provide precise information about the systems. Parnas points out that the
word document is used very generally, referring to any information accompanying the software, even if it
is imprecise or incomplete. Parnas also classified documents into different types for different purposes.
For example, specifications in the forms of “assertions or program functions” may be useful for
developers, but might not be significant for other users. One example of “other users” is testers who may
only concern the black-box functionalities of the program rather than the detailed implementation. This
clarification is helpful for our discussion in this paper since it provides rationale for the attribute scheme
to be described in Section 5.

From the above discussion, we can see that the meaning of documentation is many-fold. Thus it is
difficult to draw a definition in a single sentence. Instead, we conclude the above-mentioned definitions
by listing several aspects of documentation below:

 Documentation is a written description of software systems
 Documentation is expected to provide precise information about the systems
 Documentation can refer to the product manual that developers created for non-developer users
 Development (or technical) documentation is created for the purpose of communication among

software engineers
 Documentation can refer to different artifacts, including requirements, design, code comment, test

cases, etc.
 Documentation can be presented in different formats, varying from the traditional written text to

graphical models (e.g., those using UML), from static text to dynamic hypertext systems.

Our study is targeting the cost, benefit and quality of documentation in development phases. By
‘development phase’, we refer to the phases that exist in the process of developing software products,
including requirement, design or test, etc.[158]. As discussed in Section 1, we are only concerned with
development (or technical) documentation. Such documentation includes the document types that are
commonly used in development phases, such as requirement, design, test, process control documents,
etc. In this paper, architecture documentation, which specifies how software systems are structured, is
generally considered as a type of design. These types of document either describe the technical details of
the system or specify how the system should be built. On the other hand, we excluded those papers only
discussing non-development-related documentation (e.g., user manuals).

Some researchers and professionals believe that source code itself can be viewed as one type of
documentation. However, in this paper we do not bear this view. We intend to narrow our scope of
documentation. Otherwise, the cost or quality of documentation will include the source code quality,
which will be too broad to be addressed in one single study.

 5

2.2 SYSTEMATIC MAPPINGS AND LITERATURE-REVIEW STUDIES IN SOFTWARE ENGINEERING

Research proceeds by learning from and being inspired by existing research works. When a research area
grows and owns a large number of existing papers, it requires a substantial effort to read all the literature
before conducting new research. Summarizing the existing literature and providing an overview for a
certain area is helpful for new researchers (e.g., new Master or PhD students), identifying research trends
and shedding lights on future directions.

Like many other research fields, software engineering has its methodologies for conducting secondary
studies. Petersen et al. [152] presented a guideline paper on how to conduct systematic mapping (SM)
studies in software engineering. This paper provides insights on building classification schemes and
structuring a particular sub-domain of interest in software engineering. The technique described by
Petersen et al. was applied in our SM study.

Kitchenham et al [159] reported a review on SLR papers in software engineering. 20 relevant papers are
collected and analyzed. The authors concluded that the potential value of SLR papers is demonstrated by
the series of papers. Yet none of these papers focused on software documentation. As a more 'open' form
of SLR [160], SM study method also attracts attention among some researchers. Budgen et al. [160]
conducted an informal review on the SM papers on software engineering and reported a summary of
these papers. In total, six SM papers were examined and studied. We also browsed the Software
Engineering Evidence Map [161] which listed 41 SLR or SM papers. The areas that these papers cover
include Software Testing, Software Engineering Management, etc. Again, none of these papers
concentrate their discussion on documentation issues. Hopefully, our SM study in this paper may
address this gap and to lay a foundation for more comprehensive secondary studies, such as Systematic
Literature Review (SLR) in the future in the area of software documentation.

2.3 EXISTING WORK IN FORMALIZING SOFTWARE DOCUMENTATION

Researchers have formalized the documentation process, cost, benefit and quality attributes. We were
able to find a few existing works [12, 35, 37, 64] in this subject. In this paper, we present a formalized
view on the documentation process, cost, benefit and quality (Section 5.2). We discuss below the existing
work and also how our extended models differ from the previous work.

Arthur and Stevens [12] reported a case study on assessing the adequacy of project documentation based
on a taxonomic structure for documentation characteristics. They defined Document Quality Indicators
(DQI) to decompose the quality into factor level and form a hierarchical model. Based on the
characteristics they collected, our proposed model incorporates other attributes that are not included in
the Arthur and Stevens’ model, such as up-to-date-ness and content duplication. In other words, our
work offers a more comprehensive model of document quality characteristics.

Visconti and Cook [64] proposed a 4-level Documentation Process Maturity model. Their model aims to
evaluate the document process maturity and to address the low quality issues of documentation. In their
model, each level is identified with a name, keywords, key process areas, key practice, key indicators, etc.
They also proposed an intermediate set of goals toward higher levels of process maturity. However, their
maturity model does not solve the problem of measuring the document quality directly. Our study, in
contrast, decomposes the document quality concept into different attributes and lays a foundation for
further concrete, quantitative measurement of document quality.

Priestley and Utt [37] integrated the documentation development process into the Rational Unified
Process (RUP). In their model, they identified the workers (e.g., technical writers, information architects),
the artifacts (e.g., concept, task and documentation) and the documentation development work-flow.
While they focus their discussion on the process of developing documentation, our proposed model
emphasizes the relationships among the entities in the process: software personnel, tasks and
documentation, so as to investigate the cost or benefit of software documentation.

 6

Meng et al. [35] proposed a software comprehension model where document is modeled as ”descriptions
of the documented artifacts”. The authors aim to use such a process model to describe comprehension
tasks in different contexts. Their proposed model is similar to the one which we present (See Figure 2) in
this paper in several aspects: (1) Both models consider tasks as the main activity that motivates software
engineers to consult documents; (2) Documents are considered as main information sources in both
models. However, since their model concentrates on program comprehension, the authors do not
elaborate on and types of documents or types of tasks as we do in this paper. For example, we
differentiate tasks into two main categories: maintenance tasks and pre-maintenance tasks, and for each
category we include corresponding sub-categories (See Figure 2). Also, types of documentation artifacts
are elaborated in our model. A document can be presented in textual or visual form, or as code comments.
Such elaborations are necessary to study the documentation usage process in detail and thus to
investigate the benefit or cost of documentation.

3 RESEARCH METHOD

In the following, an overview of our research method and then the goal and research questions of our
study are presented.

3.1 OVERVIEW

This SM is carried out in reference to the guidelines provided by Petersen et al. [152], and Kitchenham
and Charters [150]. In designing the methodology for this SM, methods (e.g., deriving concise research
questions and research methodology) from several other SMs such as [141, 145, 146] were also
incorporated.

Our SM study process is outlined as a UML activity diagram in Figure 1. The process consists of several
phases (activities) which are described throughout Sections 4-6. The Research Questions (RQs) appearing
in Figure 1 are discussed in the next section.

Figure 1: Our research process

3.2 GOAL AND RESEARCH QUESTIONS

The goal of this study is to systematically review the state-of-the-art in analyzing cost, benefit, and quality
of software documentation within the software development lifecycle (SDLC), to classify the papers in

Initial
Attributes

Relevant articles found
in databases (120

studies)

Application of
inclusion criteria

Articles from
specific venues

Articles by browsing
personal web pages

Final selection
(69 studies)

Article selection (Section 4)

Attribute
Identification

Classification Scheme/Map (Section 5)

Attribute
Generalization and
Iterative Refinement

Final Map

Systematic mapping (Section 6)

Systematic
mapping

Systematic
Mapping results

RQ 1-11

IEEE
Xplore

ACM
Digital

Library

Google
Scholar

Microsoft
Academic

Search
CiteSeerX

Referenced
articles

Science
Direct

Application
of exclusion

criteria

Filtered set
(51 studies)

Action

Database

Entity

Multiple Entities

Legends

 7

this area and to find out the recent trends in this field from the perspective of researchers and
practitioners.

In simpler terms, the goal is to understand the software documentation research with regard to the
following three attributes: cost, benefit, and quality. We are also interested in understanding how the
research area has evolved over time with regards to those attributes.

Based on the above goal, the following research questions are raised. Main topics, question bodies and
rationale for each Research Question (RQ) are presented as below. Classifications used to answer each of
the questions are discussed in Section 5.

 RQ 1 -Number of papers by research facet: What type of research methods are used in the papers? A
paper could be simply a solution proposal, while other papers take experimental research approaches
(with various levels of rigor) [152]. The rationale behind this RQ is that knowing the breakdown of
the research area with respect to (w.r.t.) research facet types will provide us with the maturity of the
field and papers in using empirical approaches.

 RQ 2 -Number of papers by contribution facet: What types of contributions are made by the papers?
How many papers present documentation methods/techniques, tools, models, metrics, or processes?
Knowing the breakdown of the papers w.r.t. contribution facet types will provide us with the list of
each contribution type (e.g., documentation tools presented in the previous papers) which could be
used in follow-up papers.

 RQ 3 -Types of development life-cycle model: In what type of development life-cycle model (e.g.,
waterfall or Agile) is the documentation applied? Knowing the breakdown of the papers with respect
to development phases in which documentation is used will provide us with the ratio of the
processes using or studying documentation.

 RQ 4 -Type of artifact: What are the artifact types for which documentation is made? Artifacts types
may include requirement, design, test, process and code. The answer to this RQ can help us
understand for what purposes most documentation is developed.

 RQ 5 -Documentation formats: In what format is the documentation presented? Possible formats
include formatted text, models (e.g., UML), code comments, specific tools, etc. Addressing this RQ
will help us gain knowledge about the type of formats most documentation is expressed.

 RQ 6 –Objects under study: What are the attributes of the objects under study? Some papers have
studied the documentation issues in the context of case-papers, while others have involved
participants in surveys to solicit their input in studying the documentation issues. This question
intends to analyze the attributes of those objects, e.g., size and scale of case study systems, and
number of participants involved in surveys. The rationale behind this RQ is to characterize the size
and scale of the case papers in papers which have involved software systems or survey participants.

 RQ 7 -Focus of papers: Among all papers devoted to documentation, what is the percentage of
papers that focus on these aspects of interest: cost, benefit and quality? Addressing this RQ will
reveal which of the above aspects have received most of the attention in the community, thus,
enabling us to find the less-developed areas for conducting new research.

 RQ 8 -Software documentation cost attributes and metrics: What attributes and metrics related to
the cost of documentation have been studied? Addressing this RQ will provide the list of most-
popular attributes and metrics, along with the level of research activity on each, which could be used
for future papers.

 RQ 9 -Software documentation usage and benefit attributes and metrics: What attributes and
metrics related to the usage/benefit of documentation have been studied? Addressing this RQ will
provide same benefits as RQ 8.

 RQ 10 -Software documentation quality attributes and metrics: What attributes and metrics related
to the quality of documentation have been studied? Addressing this RQ will provide same benefits as
RQ 8 and RQ 9.

 8

 RQ 11-Industry’s involvement: What are industry’s involvement related to software documentation
cost, benefit and quality? Addressing this RQ will assess the degree of software industry’s
involvement in and its contribution to the body of knowledge in this field.

4 PAPER SELECTION

Recall from Figure 1 that the first phase of our SM process is selection of relevant papers. For the paper
selection phase of our SM, we explain the following steps in order:

 Source selection and search keywords (Section 4.1)
 Exclusion criteria (Section 4.2)
 Inclusion criteria (Section 4.3)
 Final pool of papers and the online repository (Section 4.4)

4.1 SOURCE SELECTION AND SEARCH KEYWORDS

To find the relevant primary papers, we searched the following six major online search academic paper
search engines: (1) IEEE Xplore1, (2) ACM Digital Library2, (3) Google Scholar3, (4) Microsoft Academic
Search4, (5) CiteSeerX5, and (6) Science Direct6.

To ensure that we include as many relevant papers as possible in the pool of selected papers, we followed
a rigorous procedure to construct the search string. First, we searched the IEEE Standard Glossary of
Software Engineering Terminology (IEEE Standard 610.12-1990) for the definitions of document and
documentation. Based on the definitions of those terms, we identified the following keywords: project plan,
specification, test plan, user manual, technical documentation, design documentation, architecture document,
architecture documentation, requirement document, and design document. Since user manual is not our focus in
this study, we excluded this term. These terms form our noun set S1. Next, since our aspects of interest are
cost, benefit, and quality, which forms our second set of terms, S2. Also, in order to narrow our results
related to software or computer systems, we identified a set of modifiers S3 including software, computer,
and system. Finally, each search string is constructed with pattern },,{ 332211213 SsSsSssssString  . For

example, the following search strings were generated with this method: software document cost, software
document benefit, and software document quality.

In our search phase, we benefited from the guidelines presented by Zhang et al. [162]. With these search
strings, we found 120 papers as our initial pool of potentially-relevant papers. Only papers written in
English language were considered. Most papers’ full-text PDF files were electronically available. For
those not available online, we ordered them via the University of Calgary’s Interlibrary Loan system. We
received a dozen of those cases, but five papers [70-74] could not be accessed even after we ordered them.
Finally, only papers published/available by the end of March 2012 were included in our pool.

4.2 EXCLUSION OF UNRELATED PAPERS

The next step in our paper selection process was to exclude the irrelevant papers. Specifically, our focus
was on papers that discussed cost, benefit and quality of software documentation applied during any
software development phase (e.g., requirement, design, etc.).

The study s will be excluded if the report or paper p of s meets all the criteria as below:

1http://ieeexplore.ieee.org
2http://dl.acm.org
3http://scholar.google.com
4http://academic.research.microsoft.com
5http://citeseerx.ist.psu.edu
6http://www.sciencedirect.com

 9

 p has no content that explicitly discusses any known form of cost related to technical software
documentation, which can use (1) quantitative metrics such as money, time, or (2) subjective
metrics, such as survey responses, perceived mental efforts, etc. or (3) any other metrics
associated with costs, such as document size;

 p has no content that explicitly discusses any known form of benefit related to technical software
documentation, which can use (1) quantitative metrics such as money or time, or (2) subjective
metrics, such as survey responses which are commonly seen in empirical studies to provide
subjective measurements from the perspective of practitioners, (3) any other metrics associated
with documentation benefit;

 p has no content that explicitly discusses any known form of quality aspects related to technical
software documentation. The target quality aspects can be any characteristic related to
documents that are discussed in the context of software development, such as document
structure and document’s up-to-date-ness.

To apply this exclusion criterion to the initial pool (120 papers), a voting phase was conducted among the
first four authors of this paper. They inspected the papers in the initial pool and assigned a vote on a 9-
point scale to each paper, with ‘9’ indicating a strong opinion in favor of including a paper, and ‘1’
indicating a strong opinion in favor of excluding a paper. Thus, the maximum vote on a paper could be
36 marks. We decided to use a threshold of average score of 5 out of 9, i.e. vote value of 4*5=20 in total,
for the decision on paper inclusion/exclusion.

For each paper inspected, we reviewed its title, abstract and keywords. If a vote could not be made based
on this information, a more in-depth evaluation was conducted. In case of a wide variance value among
the votes for a study, authors carefully discussed such cases to ensure quality of the votes. Based on the
results of the joint voting, the size of the pool of selected papers decreased from 120 to 51.

4.3 INCLUSION OF ADDITIONAL PAPERS

To minimize the risk of missing relevant papers, similar to previous SM papers and SLRs, we included
additional papers manually via:

 Personal web pages of active researchers in the field of interest
 References found in papers already in the pool
 Specific venues

To identify the additional personal web pages, we ranked the author names by the number of times they
appear in the author list. The authors ranked top 10% were identified as active authors and then we
browsed their personal webpages to look for additional papers.

Also, we examined the reference lists of the 51 papers that we obtained in the search phase and looked for
new relevant papers. We did so to include those relevant papers that we might have missed when using
search engines.

To identify the specific venues, we ranked the venues by the number of papers belonging to them. The
top 10% venues are International Conference on Design of communication (SIGDOC), International
Conference on Software Maintenance (ICSM), Journal of Systems and Software (JSS) and IEEE
Transactions on Software Engineering (TSE). However, we found that the only venue focusing on the
area of software documentation was the SIGDOC.

All papers found in the additional venues that were not yet in the pool of selected papers but seemed to
be candidates for inclusion were fed into the voting mechanism described in Section 4.2, and went
through the same procedure as explained above. After this phase, we believe that we have included the
relevant papers that we missed using search engines. By relevant papers, we refer to those papers that have
a certain number of citations and thus should appear in the reference list of at least one of included
papers.

 10

4.4 FINAL POOL OF PAPERS AND THE ONLINE REPOSITORY

After the above-mentioned phrases, the pool was finalized with 69 papers [1-69]. The reader can refer to
Section 9.1 for the full reference list of all 69 primary papers. The final pool of selected papers has been
published as an online repository using Google Docs. It has been analyzed through our systematic
mapping study, and is accessible publically online [155]. We plan to update the online repository at least
once a year in the future and to add new relevant papers as published.

5 DEVELOPMENT OF THE SYSTEMATIC MAP

Iterative development of our systematic map (classification scheme) is discussed in Section 5.1. Section 5.2
presents the meta-models summarizing and formalizing the concepts related to documentation cost,
benefit and quality. Those meta-models have helped us to carefully develop our final systematic map, as
reported in Section5.3. Section 5.4 presents our data extraction approach.

5.1 ITERATIVE MAP DEVELOPMENT

To develop our systematic map, we followed the process described in Figure 1. We analyzed the papers
in the pool and identified the initial list of attributes related to cost, benefit and quality of software
documentation. We used iterative refinement to derive the final map. To increase the preciseness of our
classification scheme, we utilized the “observer triangulation” method [153] in designing the systematic
map.

We recorded the primary papers in a shared spreadsheet hosted at online Google Docs system to facilitate
further analysis. The following information was recorded for each paper: (1) paper title, (3) authors, (2)
paper venue, (4) year of paper, (5) authors’ country of affiliation and (6) authors affiliation (i.e.,
government, academia, industry or a combination).

With the relevant papers identified and recorded, our next step was to categorize the papers in order to
begin building a complete picture of the research that has been conducted to investigate cost, benefit and
quality of documentation. Though we did not a-priori develop a categorization scheme for this project,
we were broadly interested in the attributes or metrics related to cost, benefit and quality of software
documentation reported on by the papers.

We refined these broad interests into a categorization scheme using an iterative approach that involved
all six of the authors of this paper. The first author of this paper conducted an initial pass over the data,
and based on (at least) the title, abstract and introduction of the papers created a set of initial categories
and assigned papers to those categories. As a group, we then discussed and reviewed the results of this
first analytic pass and refined the categorization. Next the rest of the researchers conducted a second pass
over the data, to revisit the categorization. When the assignment of papers to categories could not be
clearly determined just based on the title, abstract and introduction, further details of the paper were
considered. In this process, both the categories and the assignment of papers to categories, were further
discussed and refined. At the end, every paper was reviewed by at least two researchers.

5.2 FORMALIZING COST, BENEFIT AND QUALITY OF DOCUMENTATION

In this section, we present the meta-models incorporating all the extracted attributes related to
documentation cost, benefit and quality which were developed during our SM process. As discussed in
Section 2.3, our three meta-models consolidate and extend the existing documentation models in the
literature [12, 35, 37, 64].

The model presented in this section provides a unified description of the documentation process. Also,
the framework is helpful to capture and illustrate the concepts that will be discussed in later sections. We
view it as an independent contribution of this paper in addition to the SM results.

 11

5.2.1 Documentation Cost and Benefit

In order to investigate the cost or benefit of documentation, we constructed the relationship model
between each entity during the documentation process. In the design of this meta-model, we have
benefitted from the UML meta-model infrastructure [163]. Figure 2 shows the documentation
development usage, benefit and cost meta-model.

In our model, a software practitioner needs to perform development (called “pre-maintenance” in Figure 2)
or maintenance tasks. Each task consumes certain number of effort units (e.g., man-month) and thus effort
unit is modeled as an attribute of task. These tasks are classified into two categories: pre-maintenance tasks
and maintenance tasks. The former category refers to the tasks performed prior to maintenance phase,
including requirement, design, implementation, and testing. Note that architecture is considered a part of
design and it is not illustrated in Figure 2.

Maintenance tasks are further categorized using the classification proposed by Lientz et al. [151]:
corrective, perfective, adaptive and preventive maintenance tasks. In our model, all maintenance tasks consist
of two steps: comprehension of the program and subsequent manipulation or modification. The software
practitioner creates or maintains a document entity, which is a task incurring effort (cost). This is where the
cost of documentation is incurred.

While performing the tasks, the software practitioner needs the involvement of existing artifacts. The usual
types of artifacts include requirements, design, code and test suites. Documents are modeled as a subclass of
artifact. In terms of the format, documents can be presented in pure textual or in combination with visual
models (e.g., UML models), or in the form of code comments.

Besides, the software practitioner might also need to communicate with other team members and/or consult
with documents to get the task done. In other words, documents might serve as a communication aid
among developers or maintainers.

During the documentation usage phase, the typical software practitioner uses the documentation and may
perceive the benefits and quality of documentation. In other words, documentation benefits come during
the usage process. Also, in the usage process, a certain amount of costs are incurred, including the time
and efforts of reading documents. Figure 3 and Figure 4 present the meta-model for documentation
benefit and quality. Note that most elements in these two meta-models have their correspondents in their
data scheme that we derived in Section 5.1. For example, the benefit metric Perceived Importance in Figure
3 is also one benefit attribute that is included in Table 1.

 12

Figure 2- A meta-model for documentation development, usage-and cost process

In the meta-model of Figure 3, we have classified benefits into four categories: (1) maintenance aid, (2)
development aid, (3) management decision aid, and (4) other. For both maintenance aid and development
aid, comprehension aid is an integral aspect. This is because many aspects of a software need to be
understood (i.e., comprehended) in order to be properly modified, including its ”functionality,
architecture, and a myriad of design details” [5]. We classified those aspects as architecture comprehension,
and code comprehension. For instance, 19 papers in the repository considered documentation as an aid to
comprehend code or system structure (see Section 6.9 for details).

Figure 3: A meta-model for documentation benefit

Several researchers have argued and shown that documentation can also play an important role in
management decision-making process [30]. To include this aspect into our mapping, we created a
category named management decision aid. In particular, some researchers proposed that some documents
aid management decisions by classification of responsibility [30].

e.g., man hours,
man month

communicates with

performs

involves

consults

perceives

traces
(refers) to

has

Team member Software practitioner

Task
effort: Effort unit

Pre-maintenance task

Requirement

Manipulation
Corrective

Textual

Code
comment

Visual
(i.e., model)

Perfective

Adaptive

Preventive

Comprehension

Design

Implementation

Testing

Maintenance task

Artifact Document

Quality of doc

may be

may be

Usage cost

Benefit of doc

incurs

perceives

is a

creates or maintains

Refers to Quality
meta-model

Refers to Benefit
meta-model

Actual usage of
documentation can be
calculated from the actual
of documents used.

Requirement

Design

Code

Test

is measured by

perceives

Benefit of doc

Benefit metric

Reduction in
effort (time)

Perceived
importance

Software practitioner

Classification of
responsibility

e.g., document
reuse, defect
reduction

Maintenance aid

Other

Development aid

Management
decision aid

Comprehension
aid

Visualization of
system complexity

Architecture
comprehension

Code
comprehension

 13

Several papers proposed metrics to quantitatively measure documentation benefit. . Among all the papers
in the repository, we found two main metrics that have been used to measure benefits quantitatively:
reduction in effort and perceived importance. Reduction in effort refers to that software practitioner would
benefit in a way that would save his/her effort (e.g., less time spent on a particular maintenance task)
with the aid of documentation. Perceived importance is used by several papers [55, 56, 66], describing
software practitioners perception of the importance of documentation. The latter metric is often measured
using questionnaire-based surveys.

5.2.2 Documentation Quality

To help us classify quality-related attributes, we constructed a unified model which incorporates all
quality attributes (as shown in Figure 4). A typical software practitioner would usually utilize a type of
documentation management system or infrastructure to access (retrieve) software documents. Examples
of documentation management systems include online systems (e.g., Wiki), or conventional desktop
word processing tools (e.g., Microsoft Word) [142]. Each document entity has various attributes: title,
author(s), abstract, keywords, format, structure and contents. Note that document structure is believed to
have impacts on document quality based on the common sense that, given other attributes the same, a
well-structured document is probably easier to read than non-well-structured ones.

We created an abstract class named "Quality" that refers to high-level encapsulation of quality for any
entity in the context. Documentation Quality, as a type of Quality, denotes the intrinsic quality of a
document. In our model, software document Format and Structure are assumed to have impact on
Documentation Quality.

Document content is an integral part of a document object and has its own quality attributes. We
modeled the quality of content using Content Quality, which has several attributes as its subclass:
accessibility, accuracy, author-related, completeness, consistency, correctness, information organization, format,
readability, similarity, spelling and grammar, traceability, trustworthiness, up-to-date-ness. Accuracy is a sub-
class of correctness. This is based on the fact that correctness is the premise of accuracy. In other words, an
accurate document must be correct, but a correct document can be very general or described in a high-
level manner and not necessarily accurate, e.g., a general sentence such as ”The system consists of many
components” instead of accurate description such as ”System XSD consists of three modules and five sub-
systems”. We included the author-related attributes in the model because, in practice, the authoring
process of documents is an important factor which could impact documents quality [31].

5.3 FINAL SYSTEMATIC MAP

Table 1 shows the final systematic map that we developed following the process described in Section 5.2.
In the table, for each RQ (column 1), the corresponding attributes (column 2), the attribute’s potential
value set (column 3) and whether it is a multiple choice or a single-choice attribute (column 4), are shown.
The last column indicates whether, for each attribute, multiple selections can be applied. For example, for
RQ 2 (research fact type), the corresponding value in the last column is ‘S’ (Single), indicating that one
study can only have one research facet type. It is either a solution proposal, a validation research, or any
other option listed in the scheme. In contrast, for RQ 1 (contribution type) for example, the corresponding
value in the last column is ‘M’ (Multiple), which indicates that one study can contribute more than one
type of options (e.g., method, tool, etc.). Sections 5.3.1 to 5.3.10 present the details about each attribute
scheme listed in Table 1.

 14

Figure 4- A meta-model for documentation quality

Table 1: Final systematic map developed and used in our study

RQ Attribute Value set (M)ultiple/
(S)ingle

1 Type of paper-
Contribution facet

{Method/technique, tool, model, metric, process, survey or
empirical results, other} M

2 Type of paper-
Research facet

{Solution proposal, validation research, evaluation research,
experience papers, philosophical papers, opinion papers, other} S

3 Development life-cycle
model {Waterfall, iterative, agile, not mentioned explicitly, other} S

4 Target artifact of
documentation {Requirement, .design, code, test, process, quality, generic, other} M

5 Documentation format {Formatted text, models, code comments, specific documentation
tool, generic, other} M

6
Attributes of objects
under study:
 Number of systems

Number of systems: Integer
System types , {Open-source, commercial, government, academic
experimental}

S

Title

Document
Documentation

System
(Infrastructure)Software practitioner

Authors Abstract

Doc quality

Content quality

<<abstract>>
quality

Keywords

uses to retrieve

Accuracy

Format Structure Contents

hasimpacts

impacts

Accessibility Author-related

Consistency Correctness

Duplication Information
completeness

Readability Similarity

Spelling and
Grammar Traceability

Trustworthiness Up-to-datedness

e.g., pseudo code,
flow chart, UML, etc.

e.g., Wiki,
Word files

 15

RQ Attribute Value set (M)ultiple/
(S)ingle

 System types
 LOC of systems
 Number of

organizations
 Number of human

subjects

LOC: Integer
Number of organizations : Integer

Number of human subjects: Integer

7 Focus {Documentation cost, documentation usage/benefit,
documentation quality} M

8 Documentation cost
attributes

{Development cost, maintenance cost, usage cost, document size,
other} M

9 Documentation usage
and benefit attributes

{development aid, management decision aid, maintenance aid,
architecture/ design comprehension, code comprehension,
perceived importance, reduction in effort (time), actual usage, other}

M

10 Documentation quality
attributes

{Accessibility, accuracy, author-related, completeness, consistency,
correctness, information organization/structure, format, readability,
similarity, spelling and grammar, traceability, trustworthiness, up-
to-date-ness, other}

M

11 Industry involvement {Academic, industry, government, joint} S

5.3.1 Type of Paper: Contribution Facet

The first set of categories in our scheme is related to the contribution facet of the study. The term
“contribution facet” is taken from Petersen et al. [152]. The term describes the types of contributions such
as being a method/technique, tool, model, metric, process, survey or empirical results. We also added
another type: survey or empirical results, since we found that many papers contribute such results. If a
study could not be categorized into any above-mentioned types, it would be placed under “Other”.

5.3.2 Type of Paper: Research Facet

The second set of categories in our scheme deal with the nature of the research reported in each paper.
Similar to "contribution facet", the term "research facet" is defined by Petersen et al. [152] to classify the
research into several categories, including validation, evaluation, etc. The aim of this mapping is to
provide insights into the level of empirical foundation used in this domain. The “research type”
categories include [152]:

 Solution proposal: A paper in this category proposes a solution to a problem. The solution can be
either novel or a significant extension of an existing technique. The potential benefits and the
applicability of the solution are shown only by a small example or a good line of argumentation.

 Validation research: A paper in this category provides preliminary empirical evidence for the
proposed techniques or tools. These papers either proposed a novel technique/approach and its
limited application in a certain context to demonstrate its effectiveness, or conducted a survey or
interview among a certain number of participants to answer a particular research question. More
formal experimental methods (e.g., hypothesis testing, control experiment) or results are further
needed to build relevant theories.

 Evaluation research: These papers go further than "Validation research" by using strict and formal
experimental methods in evaluating novel techniques or tools in practice. Hence, these papers
provide more convincing empirical evidence and are helpful to build theories. Comparing the
definition of Validation and Evaluation research, we may notice that they can be categorized as

 16

empirical research, yet the main difference lies in empirical methods used. If one empirical papers
employs such strict and formal methods as hypothesis testing or control experiment, then we
categorized it as Evaluation research. In other cases where less rigorous methods are used in the
study, e.g., a questionnaire survey or a qualitative interview, we categorize such papers as Validation
research.

 Philosophical papers: These papers sketch a new way of looking at existing things by structuring the
area in form of a taxonomy or conceptual framework.

 Opinion papers: These papers express the personal opinion of the author(s) around whether a certain
technique is good or bad, or how things should been done. They do not significantly rely on related
work or research methodologies.

 Experience papers: Experience papers explain how something has been done in practice, based on the
personal experience of the author(s).

 Field study: A study that aims to gather data about software engineering in real scientific software
environments. Examples data collection methods used include questionnaires, interviews, focus
groups, and participant observation.

 Other: A catch-all category in the event that the work reported in a paper does not fit into any of the
above research types.

5.3.3 Development life-cycle model

The next attribute in our map deals with the types of development life-cycle model applied. The
justification for this categorization is that in different development life-cycle models there might be
different requirements on documentation quality or different cost-benefit analysis. Extracting such data is
helpful to establish the relationship on the variable pair <Development life-cycle models, cost/benefit/quality of
documentation>.

5.3.4 Target Artifact of Documentation

This attribute specifies the target artifact for which documentation is made, e.g., a requirement document.
If a study did not specify what type of artifact it is discussing, it was classified under “Generic”.

5.3.5 Documentation Format

This attribute is intended to investigate what type of format documentation is presented. By ‘format’, it
refers to the specific form that documentation is presented. Documentation can be presented using static,
manually written text, models (including graphical modeling language such as UML, etc.) and code
comments. It can also be automatic, such as electronic documents presented with the aid of specific tools
support (e.g., Javadoc, etc.). If one paper does not mention explicitly the documentation format, it falls
into the category “Generic”.

5.3.6 Objects under Study

Most primary papers had objects under study which were either software systems or human subjects.
These objects varied depending on the research type of the paper. Often for solution proposals or some
experimental papers, authors introduced or applied their approach in a novel software tool for the
purpose of illustration or validation. For the other empirical papers that conducted a questionnaire
survey or interview, the objects were human participants (usually software practitioners). Characterizing
the primary papers by the objects under study in each paper enabled us to assess their level of evidence
and experience, for the purpose of generalization validity. For example, a given paper which
quantitatively and qualitatively discusses the challenges of software documentation with experience
based on 18 organizations [36] will provide higher degree of evidence than another paper which reports
similar challenges based on two organizations only [22].

 17

For each study, we collected, if any, the information including: number of systems under study, whether
the system is open-source, commercial, government-related, or for academic experimental purposes. Also,
lines of codes (LOC), number of participating organizations, and number of human subjects (whenever
provided) were collected.

5.3.7 Focus of Study

Since the purpose of this study is to investigate the cost, benefit or quality of documentation, it is
necessary to know the focus of each study on any aspects of above mentioned types. Note that this
question is multiple-selection, which indicates that one study can focus on one or more aspect of these
types.

5.3.8 Documentation Cost Attributes

The process for extracting attributes related to documentation cost was iterative. Two rounds of reviews
among the authors were conducted. After the refinement process, we derived the attribute scheme
presented in Table 2. Note that our definition of 'cost attribute' is a general concept which includes the
strictly cost aspects (e.g., time spent, etc.) and also the cost drivers (e.g., document size) that have impacts
on the actual cost measurements. Note that the reason of including document size in our cost scheme is
based on the belief that document size is one of the factors impacting documentation costs. Generally, the
larger a document is, the more maintenance or producing cost is associated with that document.

Table 2: Documentation cost attributes

Cost attribute Description

Development cost
Time or effort spent on creating, developing and producing a
document

Maintenance cost Time or effort spent on modifying or updating a document

Usage cost Time or effort spent on using (mainly reading) documentation

Document size (length)
Metrics used to measure the size of documents, e.g., number
of words

Other
Any attributes that do not fit in the above-mentioned category
of cost attributes

5.3.9 Documentation Benefit Attributes and Metrics

Similar to extracting documentation cost attributes (Section 5.3.8), the process of extracting attributes
related to documentation benefit was iterative. Two rounds of reviews among the authors were
conducted to ensure the accuracy of the extracted attributes. After the refinement process, we derived the
attribute scheme presented in Table 3.

Table 3: Documentation benefit attributes

Benefit attribute Description

Development aid Attributes related to how documentation aids the pre-maintenance tasks.

Management
decision aid

Attributes related to how managers benefit from documentation during decision-making
process, such as using documents to classify responsibilities among developers.

Maintenance aid Attributes related to how documentation aids the maintenance tasks.

Architecture
comprehension

Attributes related to how documentation aids software practitioners understand system
architecture or design rationale.

Code comprehension
Attributes related to how documentation aids software practitioners understand code-level
details of the system.

 18

Benefit attribute Description

Perceived importance
Measures describing to what extent software practitioners perceive documentation is
important.

Reduction in effort
Measures describing to what extent the effort is reduced or saved with the use of
documentation.

Actual usage
Metrics used to measure the actual usage of documentation, such as number of visit per
document, documentation consultation frequency, etc.

Other Any attributes that do not fit in the above-mentioned category of benefit attributes.

5.3.10 Documentation Quality Attributes

For constructing this scheme, the authors applied an iterative process. At the first round, we extracted the
data related to documentation quality from each included paper. In order to minimize the personal bias,
our data were extracted from the explicit textual description in the papers. We ensured not to introduce
any self-invented attributes other than those proposed by the authors of the primary papers.

Extracted data were checked by undergoing at least two rounds of reviews by other authors than the
extractor. Then we applied attribute aggregation or clustering. During the aggregation step, all data were
put together and synonyms were merged. This is to avoid the situation that there are more than one
attributes in the final scheme refer to one highly similar aspect, e.g., Accuracy and Preciseness.

However, there are still some pairs of attributes that have certain semantic overlaps. Through the
discussion of the author, it is decided that we kept all those groups of attributes that have only minor
overlaps. For example, Consistency may also mean content organization consistency, format consistency,
etc. which overlaps with the attributes Information Organization and Format. Because the three attributes
emphasize different quality aspects, it is not appropriate to merge any two of them, thus three of them
were kept in the final scheme.

Note that if one quality-related attribute appeared only once in existing literature, we classified it into the
category of ‘Other’. The results of this step were a list of quality attributes related to software
documentation. In Table 4, we present the final attribute scheme and provide the description of the
attributes and how and why such attribute impacts documentation quality.

Table 4: Documentation quality attributes

Quality
attributes

Description

Accessibility

Accessibility measures describe the extent to which the content of documentation or document

itself can be accessed or retrieved by the software practitioners. Synonyms include ‘availability’,

‘information hiding’ and ‘easiness to find’. The attribute impacts how practitioners actually use

the documentation. In our repository, quite a few papers discuss how this attribute impacts
documentation quality, both quantitatively [3, 23, 66] and qualitatively [2, 12, 19, 22, 24, 38, 40,
47, 53, 67, 68].

Accuracy

Accuracy measures describe the accuracy or preciseness of documentation content. Synonyms
include ‘preciseness’. The preciseness of documentation content is generally believed to have
impacts on how easy it is for the exact information to be conveyed to the practitioners. If a
document is written in a way that the phrasing is vague or the descriptions are too abstract
without presenting concrete, exact examples, then it may create barriers for practitioners to
retrieve the information and thus impacts the documentation quality [38-40].

Author-related
This attribute refers to those attributes related to document authors, including traces of who
created the documents, author collaboration, etc. In practice, the authoring process is important
for guarantee document quality [31].

Completeness
Completeness measures describe how complete document contents are in terms of supporting
development/maintenance tasks. Software documentation is expected to contain all the
information needed for the systems or modules described, so that when practitioners read

 19

Quality
attributes Description

documentation, they can retrieve the information needed for their tasks. If any necessary piece
of information is missing, the documentation is perceived not being able to serve its purpose and
not being useful in the scenario of need [36, 54].

Consistency

Consistency measures describe the extent to which documentation, including information
presented in documents, document format, etc. are consistent and have no conflict with each
other. Synonyms include ‘uniformity’ and ‘integrity’. If the documentation contents are
presented inconsistently with conflicting elements, it may confuse practitioners and results in
unnecessary mental efforts to resolve those artifacts during the usage of such documentation [3,
36].

Correctness

Correctness measures describe whether the information provided in the documentation is correct
or is in conflict with factual information. If the document presents incorrect information, it is
likely to mislead practitioners and creates unnecessary barriers for them to finish the tasks. This
attribute is included based on common sense.

Information
organization

This attribute describe the extent to which information is organized in documents. If the
documentation is organized in a way that is clear and in a structure that is natural to
practitioners to understand, such documentation is like to be perceived as in high quality.

Format

This attribute refers to quality of documents’ format, including writing style, description
perspective, use of diagram or examples, spatial arrangement, etc. This attribute is included
because practitioners may prefer certain types of writing styles which are easier for them to
understand and use. For example, the decision of choosing to use graphical elements in the
documentation is empirically investigated to have impacts on the programming understanding
[51].

Readability
Readability measures describe how easy documents can be read. Synonyms include ‘clarity’. This
is a subjective quality attributes that is up to the practitioners to decide. Several papers in our
repository provide empirical evidence related to this quality attribute [7, 32, 54].

Similarity

Similarity measures the similarity level in different documents and whether information is
duplicated. Some papers use the following notions instead: ‘uniqueness’ and ‘duplication’.
Content duplication results in redundancy in the documentation content and leads to
unnecessary mental efforts to read and process them.

Spelling and
grammar

This attribute refers to those attributes related to the grammatical aspects of documents. If a
technical document is presented with a large number of spelling and grammatical errors, it will
impact how practitioners read that document.

Traceability

Traceability measures describe the extent to which the document modification is able to be
tracked; relevant information includes when/where/why the modification is performed and
who performed. This attribute deals with the evolution of software documentation which
requires special attention in technical documentation. This is because documentation needs to be
kept up-to-date together with the software systems or code. The traceability attribute ensures
that during the evolution, all the changes to the documentation should be justified and
verifiable.

Trustworthiness
Trustworthiness measures describe the extent to which software practitioners perceive the
documents are trustworthy and reliable. Similar to Readability, such attribute is subjective and up
to the practitioners to evaluate.

Up-to-date-ness

Up-to-date-ness measures describe the extent to which the documents are kept updated during
the evolution of software systems. Similar to the description of the attribute Traceability,
technical documentation is expected to evolve together with software systems. In ideal case,
each version of new software release is accompanied with a corresponding version of technical
documents. Documentation contents that describe the past release of software systems may
provide incorrect information, or miss new information, regarding the new system and thus
mislead practitioners.

Other
Several other attributes related to documentation quality were mentioned in several papers,
including abstractness [40], perceived goodness [66], etc.

 20

5.4 DATA EXTRACTION

To extract data, the papers in our pool were reviewed with the focus of each RQ and the required
information was extracted. To increase the preciseness of our classification scheme, we utilized the
“observer triangulation” method [153] in data extraction (mapping) phases.

For RQ 8–10 (quality, benefit and cost attributes), each attribute was assigned a two-point scale value (1-
2) to annotate the degree of empirical evidence. More specifically, if the attribute under question (e.g.,
benefit of documentation in development aid) was discussed in a paper together with quantitative
empirical evidence (e.g., survey data, controlled experiment, etc.), then the attribute was assigned a
degree of two. In contrast, if that attribute was only mentioned or discussed in a qualitative manner
without any quantitative validation, evidence or evaluation, then such attribute was assigned the degree
of one.

6 RESULTS OF SYSTEMATIC MAPPING (RQ1-11)

This section presents results related to RQ 1-11.

6.1 MAPPING THE PAPERS BY CONTRIBUTION FACET (RQ 1)

Figure 5 shows the distribution of the type of papers by contribution facet, for all the 69 papers included
in our study. Based on their contributions, some papers could be classified under more than one facet. For
example, Lehner’s study [32] makes three contributions: (1) a measurement method, (2) a tool, and (3) a
metric to measure document comprehensibility and readability.

Figure 5 indicates that proposing new techniques or improving an existing technique has attracted the
most research with 26 papers (38%). 20 papers (29%) contributed survey/empirical results. There were six
papers (9%) which could not be categorized into the five contribution facets of our scheme, thus we
categorized them under ‘Other’. The contributions of the papers in the category of ‘Other’ include a new
experimental methodology[51], general guidelines for producing documents [38, 44, 49, 53] and a
summary of lessons learned [59].

The annual trend of the same data is shown in Figure 6. In recent years, there is a focus on a mix of
different contribution facets. In terms of time, the earliest study [30] in our paper pool was published in
1971. This study is entitled “Documentation and the management of a software project—a case study”. It
is a case study in a university software project, conducted by Katezenelson. The results show that
documentation assisted project participants in making code-related decisions. The study concluded that
documentation played an important role in the success of the students’ projects.

Technique: [9, 13, 14, 16, 17, 19, 25, 27, 28, 32-34, 37, 39, 40, 43, 45, 47, 57, 61, 63, 66-69]

Tool: [2, 3, 7, 9, 11, 15, 23, 25, 27, 32, 33, 57, 60]

 21

Model: [3, 10, 12, 14, 15, 18, 20, 21, 24, 26, 28, 35, 41, 42, 45-47, 64, 65, 67]
Metric: [3, 5, 7, 12, 26, 32, 40]

Process: [34, 37]
Survey/Empirical results: [1, 4-6, 8, 21, 22, 29, 30, 36, 42, 48, 50, 52, 54-56, 58, 62, 66]

Other: [38, 44, 49, 51, 53, 59]

Figure 5: Frequency of contribution types mentioned in paper

Figure 6: Trend of contribution facets mentioned in papers over time

Readers may notice that Figure 5 and Figure 6 look slightly different in terms of the sizes of stacks. This is
because the contribution facet of a study is multiple-choice while the research facet is single-choice.

6.2 MAPPING THE PAPERS BY RESEARCH FACET (RQ 2)

Based on the classification scheme described in Section 5.3, we classified the papers into five categories.
Figure 7 shows the classification of the 69 selected papers according to the type of research they report.
Exact paper references have also been provided under the figure. Note that each paper was categorized in
a single category.

Solution proposal: [2, 11-13, 15, 17, 20, 25, 26, 34, 35, 37, 39, 45, 47, 57, 60, 61, 63, 64, 69]

Validation Research: [6-9, 14, 16, 18, 22, 24, 28-33, 36, 43, 51, 52, 54, 56, 58, 62, 65-68]
Evaluation Research: [1, 3-5, 21, 23, 27, 42, 48, 50, 55]

Experience papers: [40, 41, 59]
Opinion papers: [10, 19, 38, 44, 46, 49, 53]

Figure 7: Frequency of research types in papers

0

2

4

6

8

10

1
9
71

1
9
72

1
9
73

1
9
74

1
9
75

1
9
76

1
9
77

1
9
78

1
9
79

1
9
80

1
9
81

1
9
82

1
9
83

1
9
84

1
9
85

1
9
86

1
9
87

1
9
88

1
9
89

1
9
90

1
9
91

1
9
92

1
9
93

1
9
94

1
9
95

1
9
96

1
9
97

1
9
98

1
9
99

2
0
00

2
0
01

2
0
02

2
0
03

2
0
04

2
0
05

2
0
06

2
0
07

2
0
08

2
0
09

2
0
10

2
0
11

Technique Tool Model Metric Process Empirical Other

 22

Nearly one third of all papers (21 out of 69) relate to presentations of solution proposals without further
validation or evaluation. Moreover, a large ratio of papers is validation research (27 papers). In contrast,
11 papers (16%) are evaluation research. The remaining 10 papers are opinion papers (7 papers) or
experience papers (3 papers). There is no secondary study or philosophical study papers in our
repository.

We assume that papers presenting solution proposals are based in an understanding of the specific
conditions and problems related to this area. Such papers contribute novel ideas instead of empirical
evidence. However, because the repository size (69 papers) is relatively small, more empirical evidence,
especially evidence from rigorous experiments, are needed to help this research area grow to maturity.

Figure 8 shows the annual trend of the papers per research facet during the past 40 years. From the figure
the numbers of papers about software documentation cost, benefit and quality are generally increasing
since around year 1988. The reason may be that the number of software engineering related papers has
generally increased since that time. Furthermore, in two other recent SM papers authored by our
colleagues [164, 165] in the areas of GUI and web application testing, the authors observe the increasing
trends of the number of papers as well.

During the late 1990s, there is a short period of decrease in paper numbers (around 1971-1999). Since 2005,
there have been at least four papers in this area each year, indicating a constant interest among researcher
in this area.

In terms of annual trend of research facets, in recent years (after around 2004), more and more papers are
conducting validation or evaluation empirical papers and the share of pure solution proposals are
decreasing. This demonstrates the growing research interests to empirically validating idea proposals in
this area.

Figure 8: Trend of research facet used in papers over time

6.3 TYPES OF DEVELOPMENT LIFE-CYCLE MODEL (RQ 3)

Most of the papers (61 papers, 88%) do not explicitly mention the type of development life-cycle model
used. Agile development is only mentioned in six papers [3, 10, 45, 46, 56, 69] the earliest of which were
published in 2002 [3, 69]. Considering that “Agile” is a concept that started to gain popularity since the
late 1990s, we could probably infer that the papers published before that period could be considered to
have followed traditional waterfall or iterative development processes.

0

2

4

6

8

1
9
71

1
9
72

1
9
73

1
9
74

1
9
75

1
9
76

1
9
77

1
9
78

1
9
79

1
9
80

1
9
81

1
9
82

1
9
83

1
9
84

1
9
85

1
9
86

1
9
87

1
9
88

1
9
89

1
9
90

1
9
91

1
9
92

1
9
93

1
9
94

1
9
95

1
9
96

1
9
97

1
9
98

1
9
99

2
0
00

2
0
01

2
0
02

2
0
03

2
0
04

2
0
05

2
0
06

2
0
07

2
0
08

2
0
09

2
0
10

2
0
11

Solution Proposal Validation Research Evaluation Research Experience Papers Opinion Papers

 23

6.4 TARGET ARTIFACT OF DOCUMENTATION (RQ 4)

Figure 9 shows the distribution of documentation artifacts mentioned by the papers. If one paper
discusses any of the common types of artifact such as requirement or design documents, code comments,
software quality related documents (e.g., process record, Q/A documents, etc.), that paper is classified
under the corresponding type(s). Note that one paper could discuss more than one type of artifact.
Similar to Section 6.2, if the paper does not mention explicitly what type of documentation artifact, or its
type of documentation could not be categorized into any type of above-mentioned types, it is placed
under the ‘Generic’ category.

We can observe that design, code and requirement documentation types, in descending order, are three
dominating types. The histogram also shows that 22 papers do not provide explicit type of
documentation. In contrast, process related types (test, process or quality documents) are less frequently
discussed among the papers.

Requirement: [3-5, 9, 10, 12, 15, 17, 23, 26, 29, 30, 33, 37-39, 45, 48, 51, 53, 54, 62]
Design: [1, 3-6, 9, 10, 12, 13, 15-17, 23, 26-28, 30, 34, 35, 37-41, 45, 47, 48, 50, 51, 53, 54, 57-59, 61-63, 69]
Code: [1-3, 5-10, 12, 15, 21, 25, 26, 30, 35, 37-39, 41, 42, 45, 47, 53, 54, 60-62, 69]
Test: [1, 3, 16, 23, 37, 53, 54, 62, 69]
Process: [10, 15, 26, 37, 48, 53, 62]
Quality (i.e., QA documents): [3, 26, 53, 62]
Generic: [11, 14, 18-20, 22, 24, 31, 32, 36, 43, 44, 46, 49, 52, 55, 56, 64-68]
Other: [26]

Figure 9: Target artifacts of documentation

6.5 DOCUMENTATION FORMAT (RQ 5)

Figure 10 shows the distribution of documentation formats. The distribution seems to be a fine mix,
except the code comments type. Three types of format, including formatted text (20 papers), models (21
papers), and specific documentation tools (19 papers) had nearly the equal share of papers. 17 papers
(25%) are classified as “Generic”. Interestingly, code comments as a documentation format received a
very small share (6 papers, 9%).

When comparing Figure 10 with Figure 9, we can see that while a large number of papers (29 papers) are
discussing documentation artifacts related to code, format of code documentation is not usually in the
form of code comments (in only 8 papers), and perhaps other documentation formats are used for code
(external formats such as word documents).

 24

Formatted text: [3, 6, 8, 10, 21, 23, 26, 29, 30, 32, 37, 38, 40, 46, 50, 53, 54, 57, 67, 68]

Model: [3-5, 10, 13, 14, 17, 21, 24, 28, 34, 35, 37, 45, 46, 50, 51, 54, 58, 59, 63]

Code comments: [3, 7, 42, 46, 54, 56]

Specific tool support: [2, 3, 9, 11, 15, 19, 20, 25, 27, 33, 37, 39, 43, 47, 52, 56, 58, 60, 61]

Generic: [1, 12, 16, 18, 22, 31, 36, 41, 44, 48, 49, 55, 62, 64-66, 69]

Figure 10: Frequency of documentation formats

6.6 OBJECTS UNDER STUDY (RQ 6)

6.6.1 Software Systems Discussed

Where a given primary study provided information about the software system(s) under study, we
extracted the following three pieces of information: (1) number of systems discussed in each paper, (2)
system type (academic, commercial, open-source, governmental), and (3) size in LOC. The results of each
attribute are presented next.

6.6.1.1 Number of Systems under Study

Figure 11 shows the number of systems. In total, there were 25 papers in the repository that discussed
systems under study. Among them, 16 papers have only one system for analysis. In contrast, the number
of papers which have two or more systems under study dropped sharply. Five papers (7%) studied two
systems under study and three papers had three. One extraordinary study [18] analyzes 14 systems.

 25

One system under study: [1-4, 6, 7, 14, 15, 17, 23, 27, 28, 30, 42, 43, 51]

Two systems under study: [5, 24, 35, 41, 67]

Three systems under study: [8, 21, 68]

10+ systems under study: [18]

Figure 11: Frequency of number of systems under study

6.6.1.2 Types of Systems

Figure 12 shows the distribution of type of Systems under Study (SUS). Note that the categories of system
type are differentiated by who sponsors the development of the system. For example, if a system is
developed for academic experimental purposes, then it may have different requirements on
documentation from those sponsored to fulfill commercial needs. From the figure, we can see that most
systems (12 out of 25) are for academic experimental purposes. Eight papers involve commercial systems
while three papers mentioned documentation in the context of open-source systems. Only two papers
discussed systems related to governmental applications.

Academic: [1-3, 5, 6, 8, 14, 15, 21, 28, 30, 42]

Commercial: [4, 18, 23, 24, 27, 51, 67, 68]

Open-source: [7, 35, 43]

Governmental: [17, 41]

14121086420

18

16

14

12

10

8

6

4

2

0

Number of Systems Under Study

Fr
eq

ue
nc

y

 26

Figure 12: Type of systems under study

6.6.1.3 Size in LOC

In our two other recent SM papers (i.e., [164, 165]), we plotted LOC sizes with the year of paper.
Similarly, we intended to investigate whether there is a rising LOC trend from older to new papers. In
our repository, only eight papers (8 out of 69, 12%) report the LOC information of their systems under
study. Note that most papers do not specifically provide the exact LOC number in their paper. Based on
the limited statistics of those eight papers, there is a slight increase in LOC sizes with increase in years.
We calculated the Pearson correlation coefficient between the paired variable (year, average LOC size)
and the value is 0.38. This indicates that the systems LOC size does not increase strictly over time, but
there is a weak correlation. Nevertheless, we spotted an extraordinary case in one study conducted in
2007 [7], which analyzed a system with over 1,600,000 LOC. If more papers had reported the LOC size of
their SUSs, the analysis would have been more statistically representative. This calls for the attention of
the research community that researchers may need a standard template for reporting and provide precise
parameters about their papers so as to enable comparison and statistics gathering.

6.6.2 Survey Participants

As discussed in Section 6.1 (RQ 2), 20 papers (29%) contributed survey/empirical results. Out of those 20
papers, only 18 of them (26%) report the number of their survey participants. Figure 13 shows the
histogram of number of subjects in those papers.

From the chart, we can see that the number of participants in most survey papers is below 160. Papers
with participant numbers below 40 are dominant. Interestingly, one study [31] has approximately 1,000
participants. The histogram shows that surveys with large number of participants are rare, since inviting
and involving large population of participants is practically challenging. This is something that we have
also experienced in our own surveys in other topics (e.g., testing practices [147])

Figure 13: Frequency of number of subjects under study in survey papers

9608006404803201600

5

4

3

2

1

0

Number of Subjects Under Study (for Survey Papers)

Fr
eq

u
en

cy

 27

6.6.3 Participating Organizations

In terms of the organizations where survey participants were from, the results vary. Figure 14 shows the
histogram of number of organizations and its occurrence frequency. Exact number of organizations is not
provided in those papers. In total, 13 papers (19%) reported that number.

Not surprisingly, most participants in the selected papers were from one or two organizations. There are
also a few cross-organization papers. Another interesting study is that of Visconti et al. [65] which
reported the results of assessing documentation process among “91 projects at 41 different companies
over a seven year period”.

Figure 14: Frequency of number of organizations

6.7 FOCUS ON DOCUMENTATION COST, BENEFIT AND QUALITY (RQ 7)

The histogram in Figure 15 shows the distribution of papers that discuss each of the three documentation
aspects of our interest. From the chart, we can see that 48 papers (71%) discuss documentation quality,
followed by 37 papers (54%) on benefit. Surprisingly, and only 12 papers (18%) related to documentation
cost. More detailed interpretations of the results will be presented in Section 6.8-6.10.

Figure 15: Focus of papers

363024181260

6

5

4

3

2

1

0

Number of Organizations Under Study

Fr
eq

ue
nc

y

 28

6.8 DOCUMENTATION COST ATTRIBUTES (RQ 8)

Figure 16 shows the distribution of papers that discuss documentation cost attributes. The data were
collected based on the cost attribute scheme described in Section 5.3.8.

Among the papers in the pool, only six papers discuss the development or production cost of software
documentation. Four papers concern with documentation maintenance costs. The remaining two papers
[38, 44] have general discussions on document recording, storing, producing cost, etc. From this statistics
there are a very limited number of papers on documentation cost. In other words, documentation’s cost
aspects seemed to be neglected in the community.

In terms of cost metrics, six papers used document size to measure the cost. Among the two papers that
fell into “Other” category, one discusses the “waste of time caused by unstructured documents or
incorrect information” [38].

In terms of degree of evidence (Section 5.4), 12 out of 19 papers report quantitative empirical results. Such
a ratio (63%) shows that, although there were a small number of papers on documentation cost, existing
papers have provided high levels of empirical evidence by quantitatively measuring documentation cost.

We did not find any paper that addresses the aspect of documentation usage costs. Nevertheless, we
modeled this aspect in our meta-model (Figure 2). The lack of papers regarding this aspect indicates a
future research opportunity. We expect to see more empirical evidences that investigate what is the actual
cost while using software documentation.

Overall, it seems that, to date, there are only a handful of papers on documentation cost. This is worth the
attention of research community. The authors believe that future research in this area should focus on
cost measurement and control. Documentation, as a major investment, needs proper tuning so that
overall software life-cycle costs are optimized.

Attribute Degree of One Degree of Two

Development cost [10, 44] [6, 48, 56]

Maintenance cost [62] [4, 5, 23]

Usage cost N/A N/A

Document size [62] [7, 23, 42, 48]

Other [38, 44] -

Figure 16: Documentation cost attributes

 29

6.9 DOCUMENTATION BENEFIT ATTRIBUTES (RQ 9)

Figure 17 shows software documentation benefit attributes and their degree of evidence. The data were
collected under the benefit attribute scheme described in Section 5.3.9. From the chart, 29 papers (42%)
considered documentation as an aid to software maintenance, which is the dominating attribute.
However, among these 29 papers, only two papers[5, 21] reach two in degree of evidence. 16 papers
(55%) discussed documentation as a development aid. 10 papers are related to documentation as an aid to
comprehend system architecture while 14 papers are on low-level code comprehension. The ratio of
papers that reached the degree of two in empirical evidence is relatively small (6 out of 24).

Four survey studies (5%) are conducted to survey the perceived importance of documentation among
professionals. Only three papers are related to how documentation saved time of developers. Among
these three, only [4] measures the reduction quantitatively. The paper [4] reports a controlled experiment
on the benefit of using UML to save time in the context of maintaining object-oriented software. The
metric used in [4] to measure savings in performing the tasks was time, which aligns with our model in
Section 5.2.1.

In terms of actual usage, all three papers [3, 54, 68] reach two in degree of evidence. The metrics used in
those papers include actual usage percentage [54], number of visits per document [68] and mean
consultation number [3].

Overall, the limited number of papers reaching two in degree of evidence indicates that most papers
discussed documentation benefit in a qualitative manner. This is probably due to the difficulty of
measuring how exactly documentation aids development tasks in actual projects.

Attribute Degree of One Degree of Two

Development aid [3, 6, 19, 21, 27, 28, 30, 38, 40, 45, 50, 56, 58, 60, 62, 69] -

Management decision
aid

[15, 30, 34, 45, 49, 61] -

Maintenance aid [1-4, 6, 8, 15, 17, 19, 25, 27, 28, 35, 36, 49, 51, 54-56, 58, 59, 61-63, 66, 68, 69] [5, 21]

Design
Comprehension

[6, 28, 35, 36, 59, 61, 63] [27, 51, 54]

Code comprehension [2, 6, 25, 35, 36, 40, 45, 60, 69] [1, 8, 21, 51, 54]

Perceived importance [66] [55, 56, 58]

Reduction in effort
(time)

[17, 38] [4]

 30

Actual usage - [3, 54, 68]

Other [19, 31] -

Figure 17- Documentation benefit attributes

6.10 DOCUMENTATION QUALITY ATTRIBUTES (RQ 10)

Figure 18 shows software documentation quality attributes and their degree of evidence. Note that the
data were collected under the quality attribute scheme described in Section 5.3.10.

As the figure shows, the quality attributes of documentation which attract most attention of previous
researchers is "completeness" (17 papers, 28%). It might indicate that incomplete documentation has been
one of difficulties that most researchers or professionals have attempted to address. Following the
attribute of completeness are "consistency" (16 papers) and "accessibility" (14 papers). Besides, there are a
certain number of papers on documentation format (13 papers, 19%) and up-to-date-ness (12 papers).In
terms of degree of evidence, six papers out of 13 on documentation format reached two. Papers such as
[21, 52] have provided strong empirical evidence for the document format and its influence. There are
also five and four empirical papers that have the degree of two on completeness and up-to-date-ness,
respectively. In total, 47 out of all 132 degrees shown in Figure 18 (35%) reached the maturity degree of
two. It indicates that, for the documentation quality aspect, researchers have put efforts to empirically
evaluate this particular aspect.

Attribute Degree of One Degree of Two

Accessibility [2, 12, 19, 22, 24, 38, 40, 47, 53, 67, 68] [3, 23, 66]

Accuracy [12, 18, 38, 40, 41, 61] [65]

Author-related [19] [3, 23]

Completeness
[2, 11, 12, 15, 18, 28, 30, 37-40, 64, 67,

68]
[7, 14, 23, 36, 54]

Consistency [2, 6, 11, 12, 18-20, 28, 34, 37, 43, 64] [3, 9, 36, 65]

Correctness [10, 14, 39, 67] [36]

Info. org./structure [22, 33, 37, 46] [3, 23, 66]

Format [22, 26, 37, 46, 66-68] [3, 8, 21, 23, 51, 52]

 31

Readability [10, 12, 24, 36, 39] [7, 29, 32, 54]

Similarity [13, 24] [23, 67, 68]

Spelling and grammar [67, 68] [3, 23]

Traceability [11, 12, 27] [23, 36]

Trustworthiness [10] [65]

Up-to-datedness [13, 18, 19, 27, 41, 61, 64, 67] [3, 36, 54, 65]

Other [13, 26, 40, 53, 67] [12, 23, 56, 57, 65, 66]

Figure 18: Documentation quality attributes

6.11 INDUSTRY’S INVOLVEMENT (RQ 11)

This RQ aims to investigate industry’s involvement in studying documentation cost, benefit and quality.
Since documentation issues are a constant challenge in industrial projects, it is important to connect the
efforts of industry and academia in this subject.

To address this RQ, we first investigated author affiliations to see the level of industry-academia
collaborations of the papers in our pool. Figure 19 shows the distribution of authors of the 69 selected
papers by affiliation type. We identified four categories of authors’ affiliations: (1) papers whose authors
are all academic researchers, (2) papers authored by industry practitioners (3) papers from governmental
research groups such as NASA, and (4) collaborative work (papers jointly authored by groups of authors
affiliated with two or three different categories). As Figure 19 shows, papers from academia (57 papers,
83%) are the most frequent. Among the other groups, the number of papers written solely by
practitioners (7 papers, 10%) is higher compared to papers reported by governmental research groups (no
papers) and joint papers (3 papers, 4%).

Figure 19: Histogram of author affiliations

There are in total seven papers [10, 31, 34, 37, 44, 46, 52] authored by practitioners. The aspects concerned
in these papers include documentation process in agile development [10, 46], document quality from the
perspective of document authoring process[31], the usage of UML diagrams [34], documentation
standard [44], document notations and spatial arrangements [52], and documentation development
process [37].

However, compared with the number of papers by academia in this area, the industrial involvement are
relatively in short. We hope that industry involvement will continue to increase so as to enrich the
literature and help mature this field.

 32

7 THREATS TO VALIDITY

The discussion of threats to validity is important to judge the strengths and limitations of our SM study.
For our study, the following issues may introduce threats to validity: selection of search databases,
definition of search terms and time frame, researcher bias with regards to exclusion/inclusion, and
incorrect data extraction (classification). Using the standard classification scheme of validity threats
suggested in [166], we discuss these issues in relation to four types of threats to validity: (1) conclusion
validity, (2) construct validity, (3) internal validity, and (4) external validity.

7.1 CONCLUSION VALIDITY

Conclusion validity refers to the degree to which conclusions we reach about the relationships are
reasonable. In Section 8, we draw our conclusions about the research landscape in this area, including the
academic trend, the topics that have been frequently discussed or thoroughly studied, and the emerging
areas that deserve attention. These conclusions are based on our statistical data from the paper repository,
i.e., the number of papers focusing on a certain aspects, e.g., research facet, contribution facet, etc. The
conclusion validity issue lies in whether there is a relationship between the number of papers and the
actual academic focus and efforts. There are risks that the relationship does not exist.

7.2 CONSTRUCT VALIDITY

Construct validity is related to selecting the right variables to measure the phenomenon of interest. The
construct validity issue in our study lies in the comprehensiveness of the categorization scheme that we
used for the data extraction. One example question that readers may raise is: Are those benefits attributes
(Figure 3) the correct ones and comprehensive enough to measure all document benefits? To mitigate this
issue, all the attributes are extracted based on the collected papers and the process of extraction and
constructing schemes had been undergone several reviews by all authors. In such a way, we minimized
the number of attributes that we might have missed in the papers. Second, we have constructed the
formalized models for the three aspects (Section 5.2) in order to cover as many attributes as we can from a
theoretical standpoint.

7.3 INTERNAL VALIDITY

The internal validity concerns with how well the causal relationship is warranted. In our study, we
attempted to establish relationships between various attributes extracted from the papers and the
academic field landscape under study (cost, benefits and quality of software development
documentation). The internal validity issues are mainly in the papers’ selection process. More specially,
the issues include: (1) potentially missing relevant papers, and (2) researchers’ bias in papers
inclusion/exclusion. We discuss these two issues in the following paragraphs.

The first issue is the completeness of our paper repository. To mitigate this risk, we chose to use the
popular academic search engines, including IEEE Xplore, ACM Digital Library, etc. Also, we attempted
to use various combinations of the topics of interest and their synonyms related to software documentation,
or software documentation (Section 4.1). These string constructs were extracted from the IEEE Standard
Glossary of Software Engineering Terminology. Finally, we examined the reference list of the known papers
as well (Section 4.3) to find the ones that did not show up in our initial search efforts. Even if we have
done our best in conducting a systematic search, it is possible that we may have missed some relevant
papers during our search phase. For example, it is possible that some research projects or studies in this
area may not have been reported or they may not have been indexed in the search engines, or have been
indexed using a different set of keywords that were not included in our keyword set.

The second issue is in the inclusion/exclusion criteria that rely on the researchers’ judgment and
experience. Personal bias may be introduced during this process. To mitigate this issue, we applied a few
strategies to increase the reliability of our decisions with respect to inclusion/exclusion criteria, as
discussed next. First, each of the four researchers examined candidate papers independently and

 33

followed the voting process described in Section 4. With regards to data extraction, we split the final pool
of papers in three equally large sub-pools and assigned one researcher to each sub-pool plus an
additional reviewer. In case of disagreements about inclusion/exclusion criteria or specific classification
decisions, a second reviewer was involved. In all such cases, this procedure yielded consensus.

7.4 EXTERNAL VALIDITY

External validity is concerned with to what extent we can generalize the results of our SM study. As
described in Section 4, our selected literature under study was all written in English language. Papers
written in other languages were excluded. One issue lies in that whether the papers included in our
repository is able to represent all the relevant works in the area of software documentation
cost/benefit/quality. One threat stems from the keywords used, databases we selected and
inclusion/exclusion criteria. As discussed in Section 7.1, we followed a comprehensive search procedure
to make sure our repository was as inclusive as possible. We believe that relevant literature we selected in
our pool contained sufficient information to represent the knowledge reported by previous researchers or
professionals, including those non-English authors.

Also, note that the classification schemes that we derived are only applicable in the field of software
documentation cost, benefit and quality. Additional related papers and future papers can be categorized
using our schemes.

8 SUMMARY, CONCLUSIONS AND FUTURE WORK

8.1 ADDRESSING RQS

In this study, we addressed eleven research questions (RQ 1 to RQ 11). Below we list the main result(s) of
each RQ:

 RQ 1-Number of papers by research facet: What type of research methods are used in the papers?
In terms of contribution facet, most selected papers (about 38%) proposed new techniques or
improved an existing one. A certain proportion (29%) of papers (20 out of 69) contributes empirical
evidences.

 RQ 2-Number of papers by contribution facet: What types of contributions are made by the papers?
Validation research papers are dominating (27 papers or 40%), followed by solution proposals (21
papers, or 31%); evaluation research papers only cover 16% of all papers, followed by opinion papers
and experience papers.

 RQ 3-Types of development life-cycle model: In what type of development life-cycle model is the
documentation applied?
Most papers did not mention development cycle explicitly. Agile development was only mentioned
in 6 papers.

 RQ 4-Type of artifact: What are the artifact types for which documentation is made?
Design, code and requirement, with paper number decreasing in order, are three dominating types of
documentation; software quality related types (test, process or quality documents) are less frequently
discussed among our selected papers.

 RQ 5-Documentation formats: In what format is the documentation presented?
Three types of format, including formatted text (20 papers), models (21 papers), and tool support (19
papers) had nearly the equal share of papers; documentation mentioned as code comments received a
very small share (6 papers);

 RQ 6–Objects under study: What are the attributes of the objects under study?
Most papers had only one SUS. Most SUS’s (12 of 25 papers, 48%) were academic prototypes. Unlike
what one would expect, the trend of SUS size does not increase strictly over time. The average
number of participants in survey-based papers was 106, the highest one having approximately 1,000
participants [31]. Most participants in survey-based papers were from one or two organizations.

 34

 RQ 7-Focus of papers: Among all papers devoted to documentation, what is the percentage of papers
that have focused on these aspects of interest: cost, benefit and quality?
In terms of focus of papers, 50 papers (72%) discuss documentation quality, followed by 37 papers
(54%) on benefit, and 12 papers (17%) focusing on documentation cost.

 RQ 8-Software documentation cost attributes and metrics: What attributes and metrics related to
the cost of documentation have been studied?
Only six papers (8%) discuss the development or production cost of software documentation. Four
papers (6%) address documentation maintenance costs. In terms of degree of evidence in this
category of papers (documentation costs), 12 out of 19 papers reached the maturity degree of two (i.e.,
full empirical evaluation of the attribute).

 RQ 9-Software documentation usage and benefit attributes and metrics: What attributes and
metrics related to the usage/benefit of documentation have been studied?
In terms of documentation usage, 29 papers (42%) studied documentation as an aid to software
maintenance. 10 papers (14%) were related to documentation as an aid to comprehend system
architecture during development. 14 papers (20%) were on code-level comprehension.

 RQ 10-Software documentation quality attributes and metrics: What attributes and metrics related
to the quality of documentation have been studied?
The quality attributes of documentation that attracted most attention of previous researchers is
"completeness", followed by “consistency” and “accessibility”.

 RQ 11-Industry’s involvement: What are industry’s involvement related to software documentation
cost, benefit and quality?
Papers where all authors are affiliated with universities (83%) are dominating, compared with the
number of papers from industry (10 %), governmental research centers (0%) or joint collaborations
(4%).

8.2 SUMMARY AND CONCLUSIONS

The above-mentioned results of our systematic mapping can help new (e.g., PhD students) or established
researchers as well as practitioners to obtain an overview of the research space (approaches, metrics, tools
and models) in this field. From RQ 1-2 we can see that the majority of existing papers focus on proposing
a new approach or techniques (around 40%) and presenting preliminary validation results on their
proposal (29% of all papers contributing empirical evidences). We can infer from such a ratio comparison
that a certain number of approaches/techniques proposed have not been reportedly validated in
empirical evidences. Also, the lack of papers contributing documentation processes or metrics lets us
speculate why these aspects have been neglected in existing literature and what factors lead to such facts.
Among the empirical papers, only a small portion of them offer substantial evidences (RQ 6), such as
study results reported from large-scale development projects, or from large number of study participants
of various organizations. Stronger empirical evidences are still needed to enhance the understanding and
to establish profound theories of this field.

On the other hand, our results reveal that in most existing discussion development documents are mostly
in certain types (e.g. design, requirement, etc. from RQ 4). Software quality related document types, such
as test, process or quality documents, attracted little attention. More research concerning these types may
be worthy of consideration. In terms of documentation formats (RQ 5), certain formats, such as text,
models, tools, etc. are discussed frequently in collected papers. Questions such as “Are requirement
documents mostly textual?”, “Do practitioners write design documents using graphical models?” might
be raised about the relationship between documentation types and format. This is one interesting topic
worthy of future research. Besides, most existing research does not discuss documentation in an
explicitly-given context of development cycles (RQ 3). As people’s understanding of software
development evolves, future researchers or practitioners might need to redefine the role and boundary of
documentation according to different SDLC contexts. Specifically, research on documentation in Agile
development practice could be an interesting research direction, based on the fact that only six papers
have investigated this aspect so far.

 35

Also, the results would help to identify the emerging areas in this field and also the areas that require
more attention from the research community. As the results in RQ 7-8 reveal, one important aspect of
documentation, the cost, seems to be neglected in existing literature. There are many unanswered
questions regarding cost metrics or measurement, such as: “Is document size a good document cost
metric?”, “What factors lead to the cost?” or “What are the underlying cost-drivers in a system
development or maintenance context?” This is a strong contrast to other related research areas which
have matured with rich literature, such as software effort estimation. As the future project management
requires more accurate cost control over development process, effort consumed in documentation as one
significant cost drivers will need to be tuned properly. Therefore, more papers dedicated to understand
documentation behaviors and leading towards a documentation cost estimation model will be expected.
In terms of documentation benefits (RQ 9), only a limited number of papers provided strong empirical
evidences and the majorities only discussed benefits in a qualitative manner. Although there were a few
controlled experiments reported on how documentation or UML saved maintainers’ time or improved
code quality, an aggregation of these empirical evidences and more novel evidences are still needed to
achieve a well-established theory so as to achieve better understanding of the process and to generate
meaningful benefit measurements. This trend prediction can also be applied to documentation quality
(RQ 10). As the results show, the majorities of papers concerning documentation quality attributes have
only qualitative discussion. On the one hand, there is a general lack of models to comprehensively and
meaningfully incorporate the different aspects of software documentation. To address this issue, we
proposed a quality model in Section 5.2.2. On the other hand, current proposed metrics are still far from
mature to actually measure document quality. Again, more empirical evidences are worthy of
investigation to validate existing models and to investigate how quality-related measurements of
software documentation would generate concrete benefits for practitioners.

Recall from Section 1 that the need for this SM was motivated in the context of a multi-year industrial
collaborative research and development project, which aims to minimize the cost and amount of
documentation across the software development life-cycle for one of our industrial partners. The results
of this SM have already started to benefit our research team in that project by providing to us a summary
of what has been done in each of the following sub-areas: cost, benefits and quality of technical software
documentation. The results of the SM have enabled us to adapt (re-use) some of the existing techniques,
thus preventing us from “re-inventing the wheel”, and to develop novel methods, models and techniques
in this area. Specifically, formalized models of documentation cost, benefit, and quality that we
developed during this SM (Section 5.2) have been very beneficial for our team members in a formal
analysis of the subject matter.

In terms of industry’s involvement in the field, a certain number of papers concerning practical aspects of
documentation (e.g. tool building, standard selection, etc.) are reported by our industrial colleagues. We
hope that such trend of industry involvement will continue to enrich the literature and help mature this
field.

ACKNOWLEDGEMENTS

This work was supported by the NSERC CRD grant #CRDPJ414157-11, and NSERC ENGAGE grant
#EGP-413039. Vahid Garousi was additionally supported by Atilim University and the Visiting Scientist
Fellowship Program (#2221) of the Scientific and Technological Research Council of Turkey (TÜBİTAK).
We would also thank the anonymous reviewers for their insightful comments that helped us improve our
paper.

9 REFERENCES

9.1 PRIMARY PAPERS

[1] E. Tryggeseth, ʺReport from an Experiment: Impact of Documentation on Maintenance,ʺ Journal of

Empirical Software Engineering, vol. 2, pp. 201‐‐207, 1997.

 36

[2] J. Sametinger, ʺDOgMA: A Tool for the Documentation & Maintenance of Software Systems,ʺ

Doctoral Dissertation, Johannes Kepler University of Linz, Austria 9783853698686, 1991.

[3] A. Forward, ʺSoftware Documentation – Building and Maintaining Artefacts of Communication,ʺ

Master in Computer Science, Ottawa‐Carleton Institute for Computer Science, University of

Ottawa, 2002.

[4] W. J. Dzidek, E. Arisholm, and L. C. Briand, ʺA Realistic Empirical Evaluation of the Costs and

Benefits of UML in Software Maintenance,ʺ IEEE Transactions on Software Engineering, vol. 34, pp.

407‐432, 2008.

[5] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, ʺThe Impact of UML Documentation on

Software Maintenance: An Experimental Evaluation,ʺ IEEE Transactions on Software Engineering,

vol. 32, pp. 365‐381, 2006.

[6] E. Soloway, R. Lampert, S. Letovsky, D. Littman, and J. Pinto, ʺDesigning Documentation to

Compensate for Delocalized Plans,ʺ Journal of Communication of the ACM, vol. 31, pp. 1259‐1267,

1988.

[7] D. Schreck, V. Dallmeier, and T. Zimmermann, ʺHow documentation evolves over time,ʺ in

Proceedings of the 9th International Workshop on Principles of Software Evolution: in conjunction with

the 6th ESEC/FSE joint meeting, Dubrovnik, Croatia, 2007, pp. 4‐10.

[8] S. B. Sheppard, J. W. Bailey, and E. Kruesi, ʺThe Effects of the Symbology and Spatial

Arrangement of Software Documentation in a Modification Task,ʺ in Proceedings of the 5th

International Conference on Software engineering, San Diego, California, United States, 1981, pp. 207‐

214.

[9] A. Aguiar and G. David, ʺWikiWiki weaving heterogeneous software artifacts,ʺ presented at the

Proceedings of the International Symposium on Wikis, San Diego, California, 2005.

[10] S. Ambler. (2011). Agile/Lean Documentation: Strategies for Agile Software Development. Available:

http://www.agilemodeling.com/essays/agileDocumentation.htm (Last Accessed: June, 2012)

[11] J. D. Arthur, R. E. Nance, and K. T. Stevens, ʺProspects for automated documentation analysis in

Support of Software Quality Assurance,ʺ Systems Research Center, Virginia Polytechnic and State

University, Blacksburg, Virginia1988.

[12] J. D. Arthur and K. T. Stevens, ʺAssessing the Adequacy of Documentation Through Document

Quality Indicators,ʺ in Proceedings of the International Conference on Software Maintenance, Miami,

FL, 1989, pp. 40‐49.

[13] F. Bachmann, L. Bass, J. Carriere, P. C. Clements, D. Garlan, J. Ivers, R. Nord, and R. Little,

Software Architecture Documentation in Practice: Documenting Architectural Layers: Special Report

CMU/SEI‐2000‐SR‐004, Software Engineering Institute, Carnegie Mellon University, 2000.

[14] J. Bayer and D. Muthig, ʺA View‐Based Approach for Improving Software Documentation

Practices,ʺ in Proceedings of the 13th Annual IEEE International Symposium and Workshop on

Engineering of Computer Based Systems, Washington, DC, USA, 2006, pp. 269‐278.

[15] B. I. Blum, ʺDocumentation for Maintenance: A Hypertext Design,ʺ in Proceedings of the Conference

on Software Maintenance, Scottsdale, AZ, 1988, pp. 23‐31.

 37

[16] R. C. de Boer and H. van Vliet, ʺWriting and Reading Software Documentation: How the

development process may affect understanding,ʺ presented at the Proceedings of the Workshop

on Cooperative and Human Aspects on Software Engineering, 2009.

[17] F. A. Cioch, M. Palazzolo, and S. Lohrer, ʺA Documentation Suite for Maintenance

Programmers,ʺ in Proceedings of the International Conference on Software Maintenance, Monterey,

California, 1996, pp. 286–295.

[18] C. Cook and M. Visconti, ʺDocumentation Is Important,ʺ CrossTalk, vol. 7, pp. 26‐‐30, 1994.

[19] F. F. Correia, ʺExtending and Integrating Wikis to Improve Software Documentation,ʺ presented

at the 4th International Symposium on Wikis, 2008.

[20] F. F. Correia, A. Aguiar, H. S. Ferreira, and N. Flores, ʺPatterns for consistent software

documentation,ʺ in Proceedings of the 16th Conference on Pattern Languages of Programs, Chicago,

Illinois, 2009, pp. 12:1‐12:7.

[21] B. Curtis, S. B. Sheppard, K.‐B. Elizabeth, J. Bailey, and A. B.‐D. Deborah, ʺExperimental

evaluation of software documentation formats,ʺ Journal of Systems and Software, vol. 9, pp. 167‐207,

1989.

[22] S. Das, W. G. Lutters, and C. B. Seaman, ʺUnderstanding documentation value in software

maintenance,ʺ in Proceedings of the Symposium on Computer Human Interaction for the Management of

Information Technology, Cambridge, Massachusetts, 2007.

[23] A. Dautovic, R. Plösch, and M. Saft, ʺAutomated Quality Defect Detection in Software

Development Documents,ʺ in 5th International Workshop on Software Quality and Maintainability,

Oldenburg, Germany, 2011.

[24] M. Ericsson, A. Wingkvist, and W. Löwe, ʺA software infrastructure for information quality

assessment,ʺ in Proceedings of the 16th International Conference on Information Quality, Adelaide,

Australia, 2011.

[25] N. T. Fletton and M. Munro, ʺRedocumenting software systems using hypertext technology,ʺ in

Proceedings of the Conference on Software Maintenance, Phoenix, Arizona, 1988, pp. 54‐59.

[26] S. Huang and S. Tilley, ʺTowards a documentation maturity model,ʺ in Proceedings of the 21st

Annual International Conference on Documentation, San Francisco, CA, USA, 2003, pp. 93‐99.

[27] A. Jansen, P. Avgeriou, and J. S. van der Ven, ʺEnriching software architecture documentation,ʺ

Journal of Systems and Software, vol. 82, pp. 1232‐1248, 2009.

[28] A. Jansen, J. Bosch, and P. Avgeriou, ʺDocumenting after the fact: Recovering architectural design

decisions,ʺ Journal of Systems and Software, vol. 81, pp. 536‐557, 2008.

[29] H. Kanter, T. Muscarello, and C. Ralston, ʺMeasuring the Readability of Software Requirement

Specifications: An Empirical Study,ʺ Journal of Information Systems and Control, vol. 1, pp. 1‐6, 2008.

[30] J. Katzenelson, ʺDocumentation and the management of a software project—a case study,ʺ Journal

of Software: Practice and Experience, vol. 1, pp. 147‐157, 1971.

[31] R. Kylmkoski, ʺEfficient authoring of software documentation using RaPiD7,ʺ in Proceedings of the

25th International Conference on Software Engineering, Portland, Oregon, 2003.

 38

[32] F. Lehner, ʺQuality control in software documentation based on measurement of text

comprehension and text comprehensibility,ʺ Information Processing & Management, vol. 25, pp.

551‐568, 1993.

[33] Y. S. Maarek and D. M. Benyfj, ʺThe use of lexical affinities in requirements extraction,ʺ in

Proceedings of Fifth IEEE International Workshop on Software Specification and Design, Pittsburgh,

Pennsylvania, United States, 1989, pp. 196‐202.

[34] N. MacKinnon and S. Murphy, ʺDesigning UML Diagrams for Technical Documentation,ʺ in

Proceedings of the 21st Annual International Conference on Documentation, San Francisco, CA, USA,

2003, pp. 105‐112.

[35] W. J. Meng, J. Rilling, Y. Zhang, R. Witte, S. Mudur, and P. Charland, ʺA Context‐Driven

Software Comprehension Process Model,ʺ in 2nd International IEEE Workshop on Software

Evolvability, Philadelphia, PA, 2006, pp. 50‐57.

[36] K.‐M. Mira, ʺA Survey of Documentation Practice within Corrective Maintenance,ʺ Empirical

Software Engineering, vol. 10, pp. 31‐55, 2005.

[37] M. Palazzolo and M. H. Utt, ʺA unified process for software and documentation development,ʺ

presented at the Proceedings of IEEE Professional Communication Society International

Professional Communication Conference and Proceedings of the 18th annual ACM International

Conference on Computer Documentation: Technology and Teamwork, Cambridge,

Massachusetts, 2000.

[38] D. L. Parnas, ʺPrecise Documentation: The Key To Better Software,ʺ in The Future of Software

Engineering, ed: Springer‐Verlag Berlin Heidelberg, 2011, pp. 125‐148.

[39] D. L. Parnas, J. Madey, and M. Llewski, ʺPrecise Documentation of Well‐Structured Programs,ʺ

IEEE Transactions on Software Engineering, vol. 20, pp. 948‐976, 1994.

[40] D. L. Parnas and S. A. Vilkomir, ʺPrecise Documentation of Critical Software,ʺ in Proceedings of the

10th IEEE High Assurance Systems Engineering Symposium, 2007, p. HASE ʹ07.

[41] L. Pemberton, L. Gorman, A. Hartley, and R. Power, ʺComputer support for producing software

documentation: Some possible futures,ʺ in The New Writing Environment: Writers at Work in a

World of Technology, ed: Springer, 1996, pp. 59‐71.

[42] P. C. Pendharkar and J. A. Rodger, ʺAn empirical study of factors impacting the size of object‐

oriented component code documentation,ʺ in Proceedings of the 20th Annual International

Conference on Computer Documentation, Toronto, Ontario, Canada, 2002, pp. 152‐‐156.

[43] D. Poshyvanyk and A. Marcus, ʺUsing Traceability Links to Assess and Maintain the Quality of

Software Documentation,ʺ in Proceedings of the 4th ACM International Workshop on Traceability in

Emerging Forms of Software Engineering, Lexington, KY, USA, 2007, pp. 27‐30.

[44] P. Robert. (1985) Selecting software documentation standards. IEEE Software. 90‐91.

[45] E. Rubin and H. Rubin, ʺSupporting agile software development through active documentation,ʺ

Requirment Engineering, vol. 16, pp. 117‐132, 2011.

[46] A. Rueping, Agile Documentation: A Pattern Guide to Producing Lightweight Documents for Software

Projects, 1 ed.: John Wiley & Sons, Inc., New York, NY, USA, 2003.

[47] J. Sametinger, ʺObject‐oriented documentation,ʺ ACM SIGDOC Asterisk Journal of Computer

Documentation, vol. 18, pp. 3‐14, 1994.

 39

[48] I. Sanchez‐Rosado, P. Rodrguez‐Soria, B. Martn‐Herrera, J. JosCuadrado‐Gallego, J. Martínez‐

Herráiz, and A. González, ʺAssessing the Documentation Development Effort in Software

Projects,ʺ in International Conferences on Software Process and Product Measurement, 2009.

[49] W. L. Schoeffel, An Air Force Guide to Software Documentation Requirements: Defense Technical

Information Center, NTIS AO‐A027 051, 1976.

[50] H. H. Schoonewille, W. Heijstek, M. Chaudron, and T. Kühne, ʺA Cognitive Perspective on

Developer Comprehension of Software Design Documentation,ʺ in Proceedings of the 29th ACM

international conference on Design of communication, Pisa, Italy, 2011, pp. 211‐218

[51] S. Tilley and S. Huang, ʺA qualitative assessment of the efficacy of UML diagrams as a form of

graphical documentation in aiding program understanding,ʺ presented at the Proceedings of the

21st Annual International Conference on Documentation, San Francisco, CA, USA, 2003.

[52] S. B. Sheppard, E. Kruesi, and W. J. Bailey, ʺAn empirical evaluation of software documentation

formats,ʺ in Proceedings of the Conference on Human factors in Computing Systems, Gaithersburg,

Maryland, United States, 1982, pp. 121‐‐124.

[53] I. Sommerville, ʺSoftware Documentation,ʺ in Revised version of chapter 30 from his book Software

Engineering 4th edition, ed: Pearson Education Ltd, 2001.

[54] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, ʺA study of the documentation essential to

software maintenance,ʺ in Proceedings of the 23rd Annual International Conference on Design of

Communication, Coventry, United Kingdom, 2005, pp. 68‐75.

[55] S. de Souza, N. Anquetil, and K. de Oliveira, ʺWhich documentation for software maintenance?,ʺ

Journal of the Brazilian Computer Society, vol. 12, pp. 31‐44, 2006.

[56] C. J. Stettina and W. Heijstek, ʺNecessary and neglected? An Empirical Study of Internal

Documentation in Agile Software Development Teams,ʺ in Proceedings of the 29th ACM

International Conference on Design of Communication, Pisa, Italy, 2011, pp. 159‐166.

[57] M. T. Su, ʺCapturing Exploration to Improve Software Architecture Documentation,ʺ in

Proceedings of the 4th European Conference on Software Architecture: Companion Volume, Copenhagen,

Denmark, 2010, pp. 17‐2.

[58] A. Tang, M. A. Babar, I. Gorton, and J. Han, ʺA Survey of the Use and Documentation of

Architecture Design Rationale,ʺ presented at the Proceedings of the 5th Working IEEE/IFIP

Conference on Software Architecture, 2005.

[59] S. Tilley, ʺDocumenting software systems with views VI: lessons learned from 15 years of

research & practice,ʺ in Proceedings of the 27th ACM International Conference on Design of

Communication, Bloomington, Indiana, USA, 2009, pp. 239‐‐244.

[60] S. Tilley and M. Hausi, ʺINFO: a simple document annotation facility,ʺ in Proceedings of the 9th

Annual International Conference on Systems Documentation, Chicago, Illinois, United States, 1991,

pp. 30‐36.

[61] S. R. Tilley, H. A. Müller, and M. A. Orgun, ʺDocumenting software systems with views,ʺ in

Proceedings of the 10th Annual International Conference on Systems Documentation, Ottawa, Ontario,

Canada, 1992, pp. 211‐219.

[62] T. C. Lethbridge, J. Singer, and A. Forward, ʺHow Software Engineers Use Documentation: The

State of the Practice,ʺ Journal of IEEE Software, vol. 20, pp. 35‐39, 2003.

 40

[63] T. Trese and S. Tilley, ʺDocumenting software systems with views V: towards visual

documentation of design patterns as an aid to program understanding,ʺ in Proceedings of the 25th

annual ACM International Conference on Design of Communication, El Paso, Texas, USA, 2007, pp.

103‐‐112.

[64] M. Visconti and C. Cook, ʺSoftware system documentation process maturity model,ʺ in

Proceedings of the ACM Conference on Computer Science, Indianapolis, Indiana, United States, 1993,

pp. 352‐‐357.

[65] M. Visconti and C. Cook, ʺAssessing the State of Software Documentation Practices,ʺ in Product

Focused Software Process Improvement. vol. 3009, ed: Springer Berlin / Heidelberg, 2004, pp. 485‐

496.

[66] G. L. Wayne and B. S. Carolyn, ʺRevealing actual documentation usage in software maintenance

through war stories,ʺ Information and Software Technology, vol. 49, pp. 576‐587, 2007.

[67] A. Wingkvist, M. Ericsson, R. Lincke , and W. Lowe, ʺA Metrics‐Based Approach to Technical

Documentation Quality,ʺ in Proceedings of the 7th International Conference on the Quality of

Information and Communications Technology, 2010, pp. 476‐481.

[68] A. Wingkvist, M. Ericsson, and W. Löwe, ʺA Visualization‐based Approach to Present and Assess

Technical Documentation Quality,ʺ Electronic Journal of Information Systems Evaluation, vol. 14, pp.

150‐159, 2011.

[69] K. Wong and S. R. Tilley, ʺConnecting Technical Communicators with Technical Developers,ʺ in

Proceedings of the 20th Annual International Conference on Computer Documentation, Toronto,

Ontario, Canada, 2002, pp. 258‐‐262.

9.2 UNAVAILABLE PAPERS

[70] J. Bayer, View‐based software documentation: Fraunhofer IRB Verlag, Stuttgart, 2004.

[71] E. R. Comer, ʺRigorous Software Engineering Standards Through Progressive Documentation,ʺ in

Second Software Engineering Standards Application Workshop, IEEE, 1983.

[72] C. Prause, J. Kuck, S. Apelt, R. Oppermann, and A. B. Cremers, ʺInterconnecting documentation‐

harnessing the different powers of current documentation tools in software development,ʺ in

Ninth ICEIS, 2007, pp. 63‐68.

[73] G. Robles, J. M. G. Barahona, and J. L. Prieto, ʺAssessing and Evaluating Documentation in Libre

Software Projects,ʺ in Workshop on Evaluation Frameworks for Open Source Software (EFOSS 2006),

Como, Italy, 2006.

9.3 EXCLUDED PAPERS

[74] R. C. Tausworthe, ʺStandard classification of software documentation,ʺ Jet Propulsion

Laboratory, Pasadena, California 1976.

[75] S. N. Alan and M. S. Roger, ʺPlayback: A method for evaluating the usability of software and its

documentation,ʺ in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

Boston, Massachusetts, United States, 1983, pp. 78‐82.

[76] S. Alberto, C. Martina, R. Barbara, and S. Giancarlo, ʺManaging Uncertainty in Requirements: A

Survey in Documentation‐Driven and Agile Companies,ʺ in Proceedings of the 11th IEEE

International Software Metrics Symposium, Washington, DC, USA, 2005, pp. 17–27.

 41

[77] S. W. Ambler, Agile Modeling: Effective Practices for EXtreme Programming and the Unified Process:

John Wiley and Sons, Inc., New York 2002.

[78] W. Ashley, ʺThe documentation of quality engineering: applying use cases to drive change in

software engineering models,ʺ in Proceedings of the 22nd Annual International Conference on Design

of Communication: The Engineering of Quality Documentation, Memphis, Tennessee, USA, 2004, pp.

4‐13

[79] A. Azmi and S. Ibrahim, ʺTest Management Traceability Model to Support Software Testing

Documentation,ʺ in Proceedings of the International Conference on Digital Information and

Communication Technology and its Application Dijon, France, 2011, pp. 21‐32.

[80] B. J. Bauer and D. L. Parnas, ʺApplying mathematical software documentation: an experience

report,ʺ in Proceedings of the 10th Annual Conference on Computer Assurance, Gaithersburg, MD,

1995, pp. 273‐284.

[81] H. S. Benson and G. Tom, ʺLetting software engineers do software engineering or freeing

software engineers from the shackles of documentation,ʺ in Proceedings of the 6th Annual

International Conference on Systems Documentation, Ann Arbor, Michigan, United States, 1988, pp.

81‐92.

[82] E. Berglund, ʺWriting for adaptable documentation,ʺ in Proceedings of IEEE Professional

Communication Society International Professional Communication Conference and Proceedings of the

18th Annual ACM International Conference on Computer Documentation: Technology & Teamwork,

Cambridge, Massachusetts, 2000, pp. 497‐508.

[83] E. Berglund and M. Priestley, ʺOpen‐source documentation: in search of user‐driven, just‐in‐time

writing,ʺ in Proceedings of the 19th Annual International Conference on Computer Documentation,

Sante Fe, New Mexico, USA, 2001, pp. 132‐141.

[84] F. J. Bethke, W. M. Dean, P. H. Kaiser, E. Ort, and F. H. Pessin, ʺImproving the usability of

programming papers,ʺ IBM Systems Journal, vol. 20, pp. 306‐320, 1991.

[85] C. Bill, K. Herb, and I. Neil, ʺA Field Study of the Software Design Process for Large Systems,ʺ

Communications of the ACM, vol. 31, pp. 1268‐‐1287, 1988.

[86] B. Thomas and S. Tilley, ʺDocumentation for software engineers: what is needed to aid system

understanding?,ʺ in Proceedings of the 19th Annual International Conference on Computer

Documentation, Sante Fe, New Mexico, USA, 2001, pp. 235‐236.

[87] P. G. Clark, R. M. Lobsitz, and J. D. Shields, ʺDocumenting the evolution of an information

system,ʺ in Proceedings of the IEEE 1989 National Aerospace and Electronics Conference, Dayton, OH,

1989, pp. 1819‐1826.

[88] T. Clear, ʺDocumentation and agile methods: striking a balance,ʺ ACM Special Interest Group on

Computer Science Education Bulletin, vol. 35, pp. 12‐13, 2003.

[89] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, ʺDocumenting Software Architectures:

Views and Beyond,ʺ in 2003. Proceedings of the 25th International Conference on Software Engineering,

Portland, Oregon, 2003, pp. 740‐741.

[90] P. J. Courtois and D. L. Parnas, ʺDocumentation for safety critical software,ʺ in Proceedings of the

15th International Conference on Software Engineering, Baltimore, Maryland, United States, 1993, pp.

315‐323.

 42

[91] D. L. Parnas, D. Smith, and T. Pearce, ʺMaking formal software documentation more practical: A

progress report ʺ Technical Report, Dept. of Computing & Information Science, Queens

University, Canada1988.

[92] D. L. Parnas, ʺA family of mathematical methods for professional software documentation,ʺ in

Proceedings of the 5th international Conference on Integrated Formal Methods, Eindhoven, The

Netherlands, 2005, pp. 1‐4.

[93] S. Delanghe, ʺUsing learning styles in software documentation,ʺ IEEE Transactions on Professional

Communication, vol. 43, pp. 201‐205, 2000.

[94] A. Forward and T. C. Lethbridge. Software Engineering Documentation Priorities: An Industrial

Study [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.7359&rep=rep1&type=pdf

[95] J. C. French, J. C. Knight, and A. L. Powell, ʺApplying hypertext structures to software

documentation,ʺ Information Processing & Management, vol. 33, pp. 219‐231, 1997.

[96] E. M. D. Galdo, R. C. Williges, B. H. Williges, and D. R. Wixon, ʺAn Evaluation of Critical

Incidents for Software Documentation Design,ʺ in Proceedings of the Human Factors and Ergonomics

Society Annual Meeting, Anaheim, CA, 1986 pp. 19‐23.

[97] T. Gerth, R. Schachtschabel, and R. Schönefeld, ʺTitle,ʺ unpublished|.

[98] R. A. Guillemette, ʺApplication software documentation: a reader measure,ʺ Special Interest Group

of the ACM on Management Information Systems Database, vol. 17, pp. 40‐40, 1986.

[99] N. J. Haneef, ʺSoftware documentation and readability: a proposed process improvement,ʺ ACM

SIGSOFT Software Engineering Notes, vol. 23, pp. 75‐77, 1998.

[100] G. Hargis, ʺReadability and computer documentation,ʺ ACM Journal of Computer Documentation,

vol. 24, pp. 122‐131, 2000.

[101] G. Hargis, M. Carey, A. K. Hernandez, P. Hughes, D. Longo, S. Rouiller, and E. Wilde, Developing

quality technical information: a handbook for writers and editors, 2nd ed.: Prentice Hall PTR Upper

Saddle River, NJ, USA, 2004.

[102] E. Horowitz and R. Williamson, ʺSODOS: A Software Documentation Support environment‐ Its

Use,ʺ in Proceedings of the 8th International Conference on Software Engineering, London, England,

1985, pp. 8‐14.

[103] D. Hyland‐Wood, D. Carrington, and S. Kaplan, ʺTowards a software maintenance methodology

using Semantic Web techniques and paradigmatic documentation modelling,ʺ Software, IET, vol.

2, pp. 337‐347, 2008.

[104] A. Jazzar and W. Scacchi, ʺUnderstanding the requirements for information system

documentation: an empirical investigation,ʺ in Proceedings of Conference on Organizational

Computing Systems, Milpitas, California, United States, 1995, pp. 268‐279

[105] W. L. Johnson and M. d. Rey, ʺDynamic (re)generation of software documentation,ʺ in Proceedings

of the 4th Systems Reengineering Technology Workshop, Monterey, California, USA, 1994, pp. 57‐66.

[106] D. Kalus and K. Torsten, ʺA pragmatic approach to software documentation,ʺ Technical report,

Technische Universitat Berlin, Germany1996.

 43

[107] D. Landes, K. Schneider, and F. Houdek, ʺOrganizational learning and experience documentation

in industrial software projects,ʺ International Journal of Human‐Computer Studies, vol. 51, pp. 643‐

661, 1999.

[108] L. D. Landis, P. M. Hyland, A. L. Gilbert, and A. J. Fine, ʺDocumentation in a Software

Maintenance Environment,ʺ in Proceedings of the Conference on Software Maintenance, Scottsdale,

AZ, 1988, pp. 66‐73.

[109] S. Liu, ʺGenerating Test Cases from Software Documentation,ʺ MSc. Thesis, Master of

Engineering, Department of Electrical and Computer Engineering, McMaster University, 2001.

[110] L. L. Lobato, P. OʹLeary, E. S. de Almeida, and S. R. de Lemos Meira, ʺThe importance of

documentation, design and reuse in risk management for SPL,ʺ in Proceedings of the 28th ACM

International Conference on Design of Communication, Carlos, Paulo, Brazil, 2010, pp. 143‐150.

[111] Luqi, X. Liang, L. Zhang, and V. Berzins, ʺSoftware documentation‐driven manufacturing:

viaduct between software engineering and virtual engineering,ʺ in Proceedings of the 27th Annual

International Conference on Computer Software and Applications, Dallas, TX, 2003, pp. 472‐477.

[112] P. Lutsky, R. Logananthara, G. Palm, and M. Ali, ʺInformation Extraction for Validation of

Software Documentation Intelligent Problem Solving. Methodologies and Approaches.ʺ vol. 1821,

ed: Springer Berlin / Heidelberg, 2000, pp. 29‐60.

[113] M. Magyar, ʺAutomating software documentation: a case study,ʺ in Proceedings of the IEEE

Professional Communication Society International Professional Communication Conference and

Proceedings of the 18th Annual ACM International Conference on Computer documentation: Technology

& Teamwork, Cambridge, Massachusetts, 2000, pp. 549‐558.

[114] A. Marcus and J. I. Maletic, ʺRecovery of traceability links between software documentation and

source code,ʺ International Journal of Software Engineering and Knowledge Engineering, vol. 15, pp.

811‐‐836, 2005.

[115] N. Marovac, ʺGuidelines for embedded software documentation,ʺ ACM SIGSOFT Software

Engineering Notes, vol. 19, pp. 22‐28, 1994.

[116] N. Marovac, ʺEmbedded documentation for semi‐automatic program construction and software

reuse,ʺ ACM SIGSOFT Software Engineering Notes, vol. 23, pp. 70‐74, 1998.

[117] E. A. Medina, ʺSome aspects of software documentation,ʺ in Proceedings of the 3rd Annual

International Conference on Systems Documentation, Mexico City, Mexico, 1984, pp. 57‐59.

[118] H. Van der Meij, ʺThe role and design of screen images in software documentation,ʺ Journal of

Computer Assisted Learning, vol. 16, pp. 294‐306, 2000.

[119] A. Metzger, P. Heymans, K. Pohl, P.‐Y. Schobbens, and G. Saval, ʺDisambiguating the

Documentation of Variability in Software Product Lines: A Separation of Concerns,

Formalization and Automated Analysis,ʺ in Proceedings of the 15th IEEE International Conference on

Requirements Engineering, Delhi, India, 2007, pp. 243‐253.

[120] A. Moallem. (2003). Usability of Software Online Documentation: A User Study. Available:

http://sjsulug.engr.sjsu.edu/amoallem/papers/834_HCI_Usability_AMoallem.pdf

[121] N. MacKinnon and S. Murphy, ʺDesigning UML diagrams for technical documentation:

continuing the collaborative approach to publishing class diagrams,ʺ in Proceedings of the 22nd

 44

Annual International Conference on Design of Communication: The Engineering of Quality

Documentation, Memphis, Tennessee, USA, 2004, pp. 120‐127.

[122] G. Odenthal and K. Quibeldey‐Cirkel, ʺUsing patterns for design and documentation,ʺ in

Proceedings of the European Conference of Object Oriented Programming, Berlin, 1997, pp. 511‐529.

[123] D. K. Peters and D. L. Parnas, ʺUsing test oracles generated from program documentation,ʺ IEEE

Transactions on Software Engineering, vol. 24, pp. 161‐173, 1998.

[124] V. Phoha, ʺA standard for software documentation,ʺ IEEE Computer, vol. 30, pp. 97‐98, 1997.

[125] A. L. Powell, J. C. French, and J. C. Knight, ʺA systematic approach to creating and maintaining

software documentation,ʺ in Proceedings of the ACM symposium on Applied Computing,

Philadelphia, Pennsylvania, United States, 1996, pp. 201‐208.

[126] J. Price, How to write a computer manual: a handbook of software documentation: Benjamin/Cummings

Pub. Co., 1984.

[127] J. Price and H. Korman, How to communicate technical information: a handbook of software and

hardware documentation: Benjamin/Cummings Pub. Co., 1993.

[128] P. Rob, ʺOptimizing your documentation with the help of technical support,ʺ in Proceedings of the

21st Annual international Conference on Documentation, San Francisco, CA, USA, 2003, pp. 6‐11.

[129] F. de Rosis, B. de Carolis, and S. Pizzutilo, ʺSoftware Documentation with Animated Agents,ʺ in

(Unpublished), 1999.

[130] E. Rubin and H. Rubin, ʺSupporting agile software development through active documentation,ʺ

Academic Journal of Requirements Engineering, vol. 16, 2011.

[131] A. Ruth, ʺEvaluating Generalized Tabular Expressions In Software Documentation,ʺ Master of

Engineering, Faculty of Engineering, McMaster University, Hamilton, 1997.

[132] M. Sabou, ʺExtracting ontologies from software documentation: a semi‐automatic method and its

evaluation,ʺ in Proceedings of the Workshop on Ontology Learning and Population (ECAI‐OLP),

Valencia, Spain, 2004.

[133] S. R. Tilley, ʺDocumenting‐in‐the‐large vs. documenting‐in‐the‐small,ʺ in Proceedings of the

Conference of the Centre for Advanced Studies on Collaborative Research: Distributed Computing ‐

Volume 2, Toronto, Ontario, Canada, 1993, pp. 1083–90.

[134] A. Tang, P. Liang, and H. van Vliet, ʺSoftware Architecture Documentation: The Road Ahead,ʺ in

9th Working IEEE/IFIP Conference on Software Architecture, Boulder, CO, 2011, pp. 252‐255.

[135] A. Taulavuori, E. Niemela, and P. Kallio, ʺComponent documentation‐‐a key issue in software

product lines,ʺ Information and Software Technology, vol. 46, pp. 535‐546, 2004.

[136] M. Visconti and C. R. Cook, ʺAn Overview of Industrial Software Documentation Practice,ʺ in

Proceedings of the 12th International Conference of the Chilean Computer Science Society, Valparaiso,

Chile, 2002, pp. 179‐186

[137] N. J. Walters and C. E. Beck, ʺA discourse analysis of software documentation: implications for

the profession,ʺ IEEE Transactions on Professional Communication, vol. 35, pp. 156‐167, 1992.

[138] X. Wang, G. Lai, and C. Liu, ʺRecovering Relationships between Documentation and Source Code

based on the Characteristics of Software Engineering,ʺ Electronic Notes in Theoretical Computer

Science, vol. 243, pp. 121‐137, 2009.

 45

[139] A. Wingkvist, W. Löwe, M. Ericsson, and R. Lincke, ʺAnalysis and visualization of information

quality of technical documentation,ʺ in Proceedings of the 4th European Conference on Information

Management and Evaluation, Reading, UK, 2010, pp. 388‐396.

[140] M. R. Wise, ʺUsing Graphics in Software Documentation.,ʺ Journal of the Society for Technical

Communication, vol. 40, pp. 677‐81, 1993.

[141] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar‐Walawege, ʺA Systematic Review of the

Application and Empirical Investigation of Search‐based Test‐Case Generation,ʺ IEEE

Transactions on Software Engineering, vol. 36, pp. 742‐762, 2010.

[142] T. T. Barker, ʺSoftware documentation: from instruction to integration,ʺ IEEE Transactions on

Professional Communication, vol. 33, 1990.

[143] K. Beck, M. Beedle, A. v. Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J.

Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J.

Sutherland, and D. Thomas, ʺManifesto for Agile Software Development,ʺ

http://www.agilemanifesto.org, Last accessed : June 29, 2012.

[144] L. C. Briand, ʺSoftware Documentation: How Much Is Enough?,ʺ in Seventh European Conference

on Software Maintenance and Reengineering (pp. 13‐15), Benevento, Italy, 2003.

9.4 OTHER REFERENCES

[145] F. Elberzhager, J. Münch, and V. T. N. Nha, ʺA systematic mapping study on the combination of

static and dynamic quality assurance techniques,ʺ Information and Software Technology, vol. 54, pp.

1‐15, 2012.

[146] V. Garousi, ʺClassification and trend analysis of UML books (1997‐2009),ʺ Journal on Software &

System Modeling (SoSyM), 2011.

[147] V. Garousi and T. Varma, ʺA Replicated Survey of Software Testing Practices in the Canadian

Province of Alberta: What has Changed from 2004 to 2009?,ʺ Journal of Systems and Software, vol.

83, pp. 2251‐2262, Nov. 2010.

[148] Y. Jia and M. Harman, ʺMutation testing repository,ʺ http://www.dcs.kcl.ac.uk/pg/jiayue/repository,

Last accessed: April 2012.

[149] Y. Jia and M. Harman., ʺAn analysis and survey of the development of mutation testing,ʺ IEEE

Transactions of Software Engineering, vol. 37, pp. 649‐678, 2011.

[150] B. Kitchenham and S. Charters, ʺGuidelines for Performing Systematic Literature Reviews in

Software engineering,ʺ in Evidence‐Based Software Engineering,ʺ Evidence‐Based Software

Engineering, 2007.

[151] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. (1978) Characteristics of application software

maintenance. Communications of the ACM. 466 ‐ 471.

[152] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ʺSystematic mapping papers in software

engineering,ʺ presented at the 12th International Conference on Evaluation and Assessment in

Software Engineering (EASE), 2008.

[153] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software Engineering:

Guidelines and Examples: John Wiley & Sons, 2012.

 46

[154] Y. Zhang, ʺRepository of papers on search based software engineering,ʺ

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository, Last accessed: April 2012.

[155] J. Zhi, V. Garousi, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, ʺCost, Benefits, Usage, and

Quality of Technical Software Documentation System Mapping Repository (Online),ʺ in

http://www.softqual.ucalgary.ca/projects/SM/doc_cost_benefit_usage_quality, Last accessed : June 29,

2012.

[156] B. A. Kitchenham, D. Budgen, and P. Brereton, ʺUsing mapping papers as the basis for further

research ‐ A participant‐observer case study,ʺ Information and Software Technology, vol. 53, pp. 638‐

651, 2011.

[157] B. Kitchenham, P. Brereton, and D. Budgen, ʺThe Educational Value of Mapping Studies of

Software Engineering Literature,ʺ in ICSE 2010 Education Theme, 2010, pp. 1‐7.

[158] S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and Practice (4th Edtion): Pearson, 2010.

[159] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, ʺSystematic

literature reviews in software engineering – A systematic literature review,ʺ Information and

Software Technology, vol. 51, pp. 7‐15, 2009.

[160] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, ʺUsing Mapping Studies in Software

Engineering,ʺ in Evidence‐Based Software Engineering, Vol. 8, pp. 195‐204, 2008.

[161] ʺSoftware Engineering Evidence Map,ʺ http://www.dur.ac.uk/ebse/evidence.php, Last Accessed:

August 2012.

[162] H. Zhang, M. A. Babar, and P. Tell, ʺIdentifying relevant papers in software engineering,ʺ

Information and Software Technology, vol. 53, 2011.

[163] ʺ UML meta‐model Infrastructure specification,ʺ

http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF, Last accessed: August 2012.

[164] I. Banerjee, B. N. Nguyen, V. Garousi, and A. M. Memon, ʺGraphical User Interface (GUI)

Testing: Systematic Mapping and Repository,ʺ Information and Software Technology, In Press, 2013.

[165] V. Garousi, A. Mesbah, A. Betin‐Can, and S. Mirshokraie, ʺA Systematic Mapping Study of Web

Application Testing,ʺ A Systematic Mapping Study of Web Application Testing, vol. 55, pp. 1374‐1396,

2013.

[166] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in

Software Engineering: An Introduction: Kluwer Academic Publishers, 2000.

